

Mark Scheme (Final)

October 2019

Pearson Edexcel International Advanced Level In Statistics S1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WST01_01_1910_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- Cord... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply
 the mark scheme but believe the method to be correct then please send
 to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate gives multiple solutions we mark the last complete solution. If in doubt send to review.

Question Number	Scheme			Marks			
1(a)	$\left[S_{xy}=\right] = \underline{1818}$		B1				
(b)	$b = \frac{"1818"}{1754} [=1.036 \text{or} \frac{909}{877}]$	ALT	M1	(1)			
	$c = -"1.036" \times \frac{5}{8}$ $\underline{\text{or}} \overline{f} =$	$80 \times \frac{5}{8} + 3500$		M1			
	9	$4500 \text{ and } \overline{f} = 3550$		A1			
		of form $h = + 1.04f$	A1ft				
	$\frac{h-4500}{80} = "1.036" \times \frac{f-3500}{80} - 0.6479 \text{or } 4500$	- "1.04" × 3550 = (820.467)	dM1				
	h = 820 + 1.04 f		A1				
(c)	On average for every <u>increase</u> in area of 1 (m ²) the by approximately (\$) <u>1.04</u>	annual heating bill increases	B1ft	(6)			
	The cost of heating is (\$) 820 even if there is no floor the "standing charge" / "base rate" etc. is (\$) 82	·	B1ft				
	$\frac{\text{of}}{\text{of}}$ the standing charge 7 base rate etc is (ϕ) 62	v		(2)			
(d)	"820.46" + "1.036"×4600						
	= (\$) 5588.31 ans in range ($5560-5610$)						
	Notes						
(b)	1 st M1 for use of $\frac{S_{xy}}{S_{xx}}$ ft their S_{xy} (allow correct use	of S_{fh} etc)					
	S_{xx} (and we of some S_{xy}) (and we of some S_{xy}) (and we of S_{yy}) (and we of						
	1 st A1 awrt -0.648 or ALT for correct values for both \overline{h} and \overline{f}						
	2^{nd} A1ft for equ'n in the form $y = c + bx$ with their c and $b = \text{awrt } 1.04$ (dep on 1^{st} M1 only) $\underline{\text{or }} \text{ ALT } \text{ for } h = \dots + (\text{awrt } 1.04)f \text{ [ignore any intercept]}$						
	3^{rd} dM1 (dep on 2^{nd} M1) for substituting $\frac{h-4500}{80}$ and $\frac{f-3500}{80}$ into their regression line of y on x						
	or ALT for correct method for intercept in h , f equation – ft their 1.04 3^{rd} A1 for $h = awrt 820 + awrt 1.04 f$ [Do not allow fractions for this final mark]						
(c) (i) (ii)	Must see correct words used, not just letters f and h B1ft for correct interpretation need: "increase of area by 1" and "increase in bill by "1.04"" Can be other words giving same idea but must see their 1.04 (can ignore units) B1ft for a suitable explanation e.g. "cost if area is zero" Must see "their 820" (which must be > 0) but can ignore units.						
(d)	Accept reasonable alternatives to "standing charge" M1 for substituting 4600 into their regress' line of h on f (or use of $x = 13.75$ in y , x equation) A1 allow answers in range 5580 - 5610						

Question Number	Scheme						
2(a)	$10 \times 7.8 \div 1.2 / 10 \times 7.8 \times \frac{5}{6} / \frac{1}{6} \times 10 \times 39$ $5 \times 3.6 \div 1.2 / 5 \times 3.6 \times 10 \times 10^{-2}$	$\frac{5}{6} / \frac{1}{6} \times 5 \times 18$	M1				
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	freq =) <u>15</u>	A1				
	$260 - "65 + 180" = \underline{15} \qquad 260 - "15 + 180" = \underline{6}$	<u>5</u>	B1ft				
			(3)				
(b)(i)	$\left[\text{Mean} = \frac{11087.5}{260} \right] = 42.644$	awrt <u>42.6</u>	B1				
(ii)	Standard deviation = $\sqrt{\frac{505718.75}{260} - \left(\frac{11087.5}{260}\right)^2} = 11.249(s = 11)$	27) awrt 11 2	(1) M1 A1				
	Standard deviation \(\frac{260}{260} \)	.27) awit <u>11.2</u>					
	130-20 (45) 15 (165-130)		(2)				
(c)	Median = $(30) + 15 \times \frac{130 - 20}{145}$ or $(45) - 15 \times \frac{(165 - 130)}{145}$		M1				
	= 41.379	9 awrt <u>41.4</u>	A1				
(d)	Positive (skew) since the median is less than the mean		B1 (2)				
(u)	or Positive (skew) since the histogram has a "tail" on the right	it oe					
	(Allow use of quartiles if $Q_1 = [34.65]$ and $Q_3 = [49.61]$ and	re correct to 2sf)	(1)				
(e)	Number of people = $\frac{6}{15} \times 145 + 20$ [= 78]		M1				
	13						
	Probability being less than 36 seconds = $\frac{78}{260}$ = 0.3 o.e.		A1				
	$\left \left(\frac{"78"}{260} \right) \times \left(\frac{"77"}{259} \right) \times \left(\frac{"76"}{258} \right); = \frac{209}{7955} \text{ or } 0.02627 \right $	awrt <u>0.0263</u>	M1;A1				
			(4)				
	N						
(a)	Notes M1 for a correct expression for one frequency Look in ta						
(")	A1 for 65 or 15	If table a	_				
	B1 for 15 or 65 ft one of their incorrect frequency or their "180" disagree ta						
(b)(i)	B1 for awrt 42.6 [Beware use of units e.g. 42.6s which looks like 42.65] (Allow $\frac{4435}{104}$)						
(ii)	M1 ft their mean. Must have the square root. [Allow use of their $\Sigma ft^2 > 300\ 000\ here]$						
	A1 for awrt 11.2 [but allow 11.25] (allow $s = 11.3$) [Answer only 2/2]						
NB	[Beware correct formula with mean = 42.64 gives 11.265 = 11.3 (3sf) but scores M1A0]						
(c)	M1 for correct use of linear interpolation to find the median ignore the end points (may be						
	implied by correct answer). NB may work up or down an						
	A1 for awrt 41.4 (Use of 130.5 gives 41.43) [Again beware of units 41.4s etc]						
(d)	B1 positive (skew) with either reason[No ft for –ve skew if Q_2	> mean].					
(u)	Ignore use of mode and condone "positive correlation"						
	If $ Q_2 - \overline{t} < 1$ allow mean close to median so no skew or s	ymmetric.					
(e)	1 st M1 for a correct method for finding the number of people.	[Correct expressi	on or 781				
	1 st A1 for the correct probability of 0.3 or exact equivalent	-	-				
	2 nd M1 for use of <u>their</u> probability without replacement (condone with replacement)						
	Score this mark for p^3 where $p =$ their 0.3 from any me 2^{nd} A1 for awrt 0.0263	thod e.g. use of r	normal etc				
<u> </u>	2 111 101 GWIT 0.020J						

Question Number	Scheme					
3(a)	$P(X < 40) = P(Z < \frac{40 - 42}{5}) = P(Z < -0.4)$					
	=1-0.6554	M1				
	= 0.3446 awrt <u>0.345</u>	A1				
(b)	P(Qualify) = $1 - ("0.3446")^3$ or $(1 - "0.3446") + ("0.3446")(1 - "0.3446") + ("0.3446")^2(1 - "0.3446")$ [$q = 0.9590$ full cale: 0.9590867]					
	$P(X > 45) = P(Z > \frac{45 - 42}{5}) = P(Z > 0.6)$	M1				
	= 1 - 0.7257 or 0.2743 allow $1 - awrt 0.726$ or awrt 0.274	A1				
	$P(X > 45 \text{ on 3rd throw } \text{ in final}) = \frac{"0.3446"^2 \times "0.2743"}{"0.959"}$	dM1				
	$= \frac{"0.0326"}{"0.9590"} $ (calc: 0.033952)					
	= awrt <u>0.034</u>	A1				
		(5)				
	NT 4	Total 8				
()	Notes 40 – 42					
(a)	1 st M1 for standardising with 40, 42 and 5. Allow $\pm \frac{40-42}{5}$					
	2^{nd} M1 for $1-p$ (where $p > 0.5$) A1 awrt 0.345 (NB Calc gives 0.3445783)					
(b)	A1 awrt 0.345 (NB Calc gives 0.3445783) 1st M1 for identifying all the cases to qualify with correct ft probabilities					
	2^{nd} M1 for an attempt standardise with 45, 42 and 5 ie $\pm \frac{45-42}{5}$					
	Use $\mu = 40$ Using $\mu = 40$ to find P(X > 45) will give 0.1587 and can award B1	if we see this				
SC B1	used in an expression of the form $("0.3446")^2 \times 0.1587$. Score on epen as 2^{nd} M0 1^{st} A1					
	They may also be able to score 1st M1 and 3rd M1 as well					
	1st A1 for 1 – awrt 0.726 or awrt 0.274 (sight of either of these scores 2nd M1 and 1st A1)					
	May be part of an expression such as $("0.3446")^2 \times 0.2743$					
	3 rd dM1 dep on 1st M1 for $\frac{\text{("their 0.3446")}^2 \times \text{"their 0.2743"}}{\text{their } q}$					
	providing the numerator < denominator and num and denom are both probs					
	2^{nd} A1 for awrt 0.034 (NB numerator is awrt 0.033 so <u>must</u> be awrt 0.034)					

Question Number	Scheme						
4(a)	If any part, especially (a) or (b), is missing send to review 0.72	B1 (1)					
(b)	C (is most likely to be the 100 metre junior champion)	B1 (1)					
(c) (i)	$S_{xx} = 3445.26 - \frac{164.4^2}{8} \left[= 66.84 \text{ or } \frac{1671}{25} \right]$	M1					
	$r = \frac{60.85}{\sqrt{66.84 \times 67.52}}$	M1					
	= 0.90578 awrt <u>0.906</u>	A1					
(ii)	The faster boys are in the 100 metres, the faster they are in the 200 metres	B1 (3)					
		Total 6					
	Notes						
(c) (i)	1 st M1 for a correct expression, allow the use of $n = 10$, ie $S_{xx} = 3445.26 - \frac{164.4^2}{10} [= 742.524]$						
	Condone one slip e.g. 3445.6 instead of 3445.26 etc						
	2^{nd} M1 for an attempt at a correct formula for r using S_{yy} and S_{xy} and their S_{xx}						
	Condone one slip e.g. 60.84 or 66.48 miscopied for 66.84 A1 for awrt 0.906						
	NB Use of $S_{xx} = 742.524$ gives $r = 0.272$ and can score M1M1A0 provided expressions						
	are seen for S_{xx} and r						
(ii)	NB on epen this is an A1 mark but we are treating it as a B1 It does not depend on	n M1 in (c)(i)					
	B1 allow equivalent statements e.g. on average boys that are faster/slower in the 100 metres are also faster/slower in the 200 metres Comment must be: (1) a comparison of time e.g. faster, quicker, slower etc (not "higher") and (2) mention 100 metres or 200 metres (and imply the other)						

Question Number	Scheme	Marks				
5(a)(i)	$P(D) = \frac{200}{320} = \frac{5}{8}$ (or exact equivalent e.g. 0.625)	B1				
(ii)	$P(D \cap X') = \frac{1}{2} \text{oe}$					
(iii)	$P(D' \cup Z') = \frac{320 - 88}{320}; = \frac{29}{40} = 0.725$ o.e.	(1) M1; A1				
(b)	$P(Z \mid D) = \frac{\frac{88}{320}}{\frac{200}{320}}; = \frac{88}{200} \text{ or } \frac{11}{25} \text{ or } 0.44$ oe	(2) M1; A1				
(c)	X and Y or X and Z or Y and Z (Allow X , Y etc)	B1 (2) (1)				
(d)	$P(D) \times P(X) = 0.625 \times 0.2 \text{or} \text{"}\frac{5}{8}\text{"} \times \frac{64}{320} = 0.125 = P(D \cap X) \text{ or}$ $P(D X) = \frac{40}{64} = 0.625 = P(D) \text{or} P(X D) = \frac{40}{200} = \frac{1}{5} = P(X) = \frac{24 + 40}{320}$	M1				
	So yes they are independent	A1 (2)				
(e)(i)	A house that does not have a driveway but has exactly two cars	B1 (2)				
(ii)	A house that has a driveway (with) fewer than two cars (oe)	B1 B1 (2)				
	Notes	Total 12				
(a)(iii)	If any part(s) of this question are missing please send to review M1 for identifying the correct 7 values: 24, 40, 35, 37, 32, 44 and 20 or sum of 232 A1 for $\frac{29}{40}$ or exact equivalent e.g. 0.725					
(b)	M1 for a ratio of probabilities with numerator of $\frac{88}{320}$ and denominator of their (a)(i) A1 for 0.44 or exact equivalent					
(c)	B1 for at least one correct pair and no incorrect ones. Do not allow e.g. $P(Y \cap Z)[=0]$ etc					
(d)	M1 for a correct test with all required probs (labels and values) stated or implied - ft P(D) A1 for a correct conclusion – allow "yes they are" but must be events not probabilities e.g. a conclusion that P(D) and P(X) are independent is A0					
(e)(ii)	1 st B1 for a house that has a driveway 2 nd B1 for fewer than two cars (Allow 0 or 1 but must not include both no car and 1 car) e.g. "has a driveway with 1 car and has a driveway with no car" is B1B0 but "has a driveway with 1 car or has a driveway with no car" is B1B1					

Question Number	Scheme	Marks				
6 (a)	$\frac{3.968 - \mu}{\sigma} = -1.2816$ or $\frac{4.026 - \mu}{\sigma} = 1.0364$	M1A1A1				
	$\mu - 1.2816\sigma = 3.968$ (Calc: -1.28155156)					
	$\mu + 1.0364\sigma = 4.026$ (Calc: 1.03643338)					
	$2.318\sigma = 0.058$	dM1				
	$\sigma = 0.0250$ $\mu = 4.00$ awrt <u>0.025 and 4</u>	A1				
(h)	0 = asset 20.2 (asla, 20.227) as 0 = asset 0.6 as (asla, 0.6744)	(5)				
(b)	$Q_3 = \text{awrt } 30.3 \text{ (calc: } 30.337) \text{ or } Q_3 - Q_1 = \text{awrt } 0.6 \text{ oe (calc: } 0.6744)$ 30.3 + 1.5("30.3" - 29.7)[= 31.2] or 29.7 - 1.5("30.3" - 29.7)[= 28.8]	B1				
		M1				
	$P(L > "31.2") = P\left(Z > \frac{"31.2" - 30}{0.5}\right) \text{ or } P(L < "28.8") = P\left(Z < \frac{"28.8" - 30}{0.5}\right)$	M1				
	= 0.0082					
	Probability it is an outlier = 2×0.0082	M1				
	= 0.0164 answer in range <u>(0.006~0.017)</u>	A1				
		(5) Total 10				
	Notes					
(a)	$1^{\rm st}$ M1 for standardising with μ and σ and forming an equation in μ and σ w	with $ z > 1$				
	1^{st} A1 for one correct equation in any form with z value as given or better 2^{nd} A1 for a 2^{nd} correct equation in any form allow 2dp or better for the z value					
	2 nd dM1 (dep on 1 st M1) for correct method to solve* their 2 linear, simultaneous equations.					
	Can be implied by both correct answers.					
	[*Must see correct substitution or correct addition/subtraction of all 3 terms] 2^{nd} A1 for both $\mu = \text{awrt } 4$ and $\sigma = \text{awrt } 0.025$ [Check it follows from their working.]					
	NB Could score M1A0A1M1A1 or M1A1A0M1A1 here					
(b)	B1 awrt 30.3 or IQR = awrt 0.6 or awrt 0.67					
, ,	1^{st} M1 correct method for finding 1 outlier limit – ft their Q_3 or their IQR					
	2^{nd} M1 standardising with their limit, 30 and 0.5 allow \pm leading to a probability Can be implied by a correct probability statement e.g. $P(L < 28.8) = 0.0$					
	3^{rd} M1 multiplying their probability by 2 (or adding their two probs both < 0.05					
~ -	A1 (dependent on all 3 M marks) for an answer in the range $0.006 \sim 0.017$					
Calc	Use of full calc values: If they use a calculator the lower limit is 28.651 upper limit is 31.3489 and probability comes to $2 \times 0.00348835 = $ awrt 0.00698					
	51.5407 and probability comes to 270.00540055 – av					

Question Number	Scheme					Marl	ζS	
7(a)(i)	2a + 2b = 0.5	5 oe; $5a+1$	1b = 1.55 oe	(any unsim	olified form)		B1; B1	
	e.g. $5a + 1$	1(0.25 - a) =	= 1.55 [imp	olies $6a = 1.2$	2 oe]		M1	
	_	a =	= 0.2*				A1 cso	
(ii)			b = 0.0	<u>5</u>			B1	
	Γ 2 · 7 · 2		2	.22	2			(5)
(b)	$\left[\mathbf{E}(X^2) = \right] 1^2$	$\times 0.35 + 2^2 \times 0$	$.2 + 3^2 \times 0.2 +$	$4^2 \times 0.15 + 5^2$	$\times 0.05 + 6^2 \times 0$	0.05 [=8.4]	M1	
	Var(X) = "8.4	$-2.5^2 = [2.1]$	5]				M1	
	Var (4X + 3)	= 16 Var (X)					M1	
			$= \underline{34.4}$				A1	
(-)	F4-1	£4 25 × 60	2.500	2.520			N/1	(4)
(c)	Expected pro	$ofit = 2.5 \times 60$ $= 150 (cen$	or 2.5×80 ts) or \$1.50 p				M1 A1	
		<u>150</u> (cen	.ts) 01 \$1.50 p	ci custoffici			AI	(2)
(d)	Let W be the	profit, in cen	ts per custom	ier				
	y	1	2	3	5	6		
	w	60	120	180	220	280	B1; B1	
	P(Y=y)	3 40	$\frac{4}{40}$	$\frac{3}{40}$	<u>22</u> 40	8 40		
	$[E(W)] = \bot ($	$(60\times3+120\times$	$4 + 180 \times 3 +$	$220 \times 22 + 28$			M1	
		(00112 1 12011		=	,	er customer	A1	
	[May work is	n dollars e.g.	\$2.67 or \$2.2	7 scores B1B	$0\overline{\text{M1A0}}$ and $0\overline{\text{M1A0}}$	\$2.07 4/4]		(4)
				NT 4			Total	15
			Mark (a	Notes)(i) and (a)(ii	i) together			
(a)(i)	1st B1 for a o	correct equati	*		i) together			
	2 nd B1 for a o	correct equati	on using $E(X)$) = 2.5				
(;;)	A1cso for $a = 0.2$ correctly shown. Dependent on M1 scored and two correct equations seen.							
(ii)	B1 for $b = 0.05$ (or exact equivalent) Independent of other marks in (a)(i). Look by table							ibie
(b)	1^{st} M1 for an attempt at $E(X^2)$ with at least 3 correct products. Allow ft of their value of b							
	Allow expression even if labelled $Var(X)$ but label of $Var(X)$ loses 2^{nd} M1 but can get 3^{rd} M1							
	2^{nd} M1 for use of $E(X^2) - [E(X)]^2$ ft their value of $E(X^2)$ 3^{rd} M1 for seeing 16 Var(X) [Allow this mark if clearly stated Var(X) = $E(X^2) = 8.4$]							
		150						
()		M1 for 2.5×60 or any other fully correct equivalent expression (allow 2.5×0.6)						
(c)		•	•	-	• '	allow 2.5×0.6	o)	
	A1 for 150 or accept \$1.5 (working with dollars requires units)							
(d)	1 st B1 for 1 st 3 values of W (can allow in an expression for $E(W)$) Look by table but must							
		st 2 values for tempt at $E(W)$		aluec but at L	aget 3 gammage	be in part (d	1)	
		ndent on at let w_j				n products		
	A1 for 207	naciit oii at le	asi one oi the	IIISI IWO DI	marks			
ALT		[= 4.45] with	at least 3 cor	rect products	seen and E(V	V) = pE(Y) - q	1	
	Use of E(Y) [= 4.45] with at least 3 correct products seen <u>and</u> E(W) = pE(Y) – q 1 st B1 for $p = 60$ and 2 nd B1 for $q = (\frac{22}{40} + \frac{8}{40}) \times 80$ (or 60)							
			`	,		ne B mark scor	red	
	M1 for $E(W)$ expression of the form above and dep on at least one B mark scored							

