Mark Scheme (Final)

October 2019

Pearson Edexcel International Advanced Level In Statistics S1 (WST01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2019
Publications Code WST01_01_1910_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- - or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft , but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate gives multiple solutions we mark the last complete solution. If in doubt send to review.

Question Number	Scheme	Marks
4(a)	If any part, especially (a) or (b), is missing send to review 0.72	B1 (1)
(b)	C (is most likely to be the 100 metre junior champion)	B1
(c) (i)	$S_{x x}=3445.26-\frac{164.4^{2}}{8}\left[=66.84 \text { or } \frac{1671}{25}\right]$	M1
	$r=\frac{60.85}{\sqrt{" 66.84 " \times 67.52}}$	M1
	$=0.90578 \ldots \quad \text { awrt } \underline{\mathbf{0 . 9 0 6}}$	A1 (3)
(ii)	The faster boys are in the the 100 metres, the faster they are in the 200 metres	B1 (1) Total 6
	Notes	
(c) (i)	$1^{\text {st }} \mathrm{M} 1$ for a correct expression, allow the use of $n=10$, ie $\mathrm{S}_{x x}=3445.26-\frac{164.4^{2}}{10}[=742.524]$	
	Condone one slip e.g. 60.84 or 66.48 miscopied for 66.84 A1 for awrt 0.906 NB Use of $\mathrm{S}_{x x}=742.524$ gives $r=0.272$ and can score M1M1A0 provided expressions are seen for $\mathrm{S}_{x x}$ and r	
(ii)	NB on epen this is an A1 mark but we are treating it as a B1 It does not depend on M1 in (c)(i)	
	B1 allow equivalent statements e.g. on average boys that are faster/slower in the 100 metres are also faster/slower in the 200 metres Comment must be: (1) a comparison of time e.g. faster, quicker, slower etc (not "higher") and (2) mention 100 metres or 200 metres (and imply the other)	

Question Number	Scheme	Marks
5(a)(i)	$\mathrm{P}(D)=\frac{200}{320}=\frac{5}{8} \quad$ (or exact equivalent e.g. 0.625)	B1
(ii)	$\mathrm{P}\left(D \cap X^{\prime}\right)=\frac{1}{2} \text { oe }$	(1) B1
		(1)
(iii)	$\mathrm{P}\left(D^{\prime} \cup Z^{\prime}\right)=\frac{320-88}{320} ; \quad=\frac{29}{40}=0.725 \quad \text { o.e. }$	M1; A1
		(2)
(b)	$\mathrm{P}(Z \mid D)=\frac{\frac{88}{320}}{-\frac{200}{320} "} ; \quad=\frac{88}{200}$ or $\frac{11}{25}$ or 0.44 oe	M1; A1
		(2)
(c)	X and $Y \quad \underline{\text { or }} \quad X$ and $Z \quad \underline{\text { or }} \quad Y$ and $Z \quad$ (Allow X, Y etc)	B1
(d)	$\mathrm{P}(D) \times \mathrm{P}(X)=0.625 \times 0.2$ or ${ }^{\prime 5}{ }^{5} " \times \frac{64}{320}=0.125=\mathrm{P}(D \cap X)$ or	(1)
	$\mathrm{P}(D \mid X)=\frac{40}{64}=0.625=\mathrm{P}(D) \text { or } \mathrm{P}(X \mid D)=\frac{40}{200}=\frac{1}{5}=\mathrm{P}(X)=\frac{24+40}{320}$	M1
	So yes they are independent	A1
		(2)
(e)(i)	A house that does not have a driveway but has exactly two cars	B1
	A house that has a driveway	(1)
(ii)	A house that has a driveway (with) fewer than two cars (oe)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$
		(2)
		Total 12
	Notes	
(a)(iii)	If any part(s) of this question are missing please send to M1 for identifying the correct 7 values: $24,40,35,37,32,44$ and 20 or A1 for $\frac{29}{40}$ or exact equivalent e.g. 0.725	232
(b)	M1 for a ratio of probabilities with numerator of $\frac{88}{320}$ and denominator of th A1 for 0.44 or exact equivalent	(i)
(c)	B1 for at least one correct pair and no incorrect ones. Do not allow e.g. P	$Z)[=0]$ etc
(d)	M1 for a correct test with all required probs (labels and values) stated or A1 for a correct conclusion - allow "yes they are" but must be events not e.g. a conclusion that $\mathrm{P}(D)$ and $\mathrm{P}(X)$ are independent is A0	$\mathrm{d}-\mathrm{ft} \mathrm{P}(D)$ bilities
(e)(ii)	$1^{\text {st }} \mathrm{B} 1$ for a house that has a driveway $2^{\text {nd }} \mathrm{B} 1$ for fewer than two cars (Allow 0 or 1 but must not include both no e.g. "has a driveway with 1 car and has a driveway with no car" is "has a driveway with 1 car or has a driveway with no car" is B	nd 1 car) but

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Question \\
Number
\end{tabular} \& Scheme \& Marks \\
\hline 6 (a) \& \[
\begin{array}{ll}
\frac{3.968-\mu}{\sigma}=-1.2816 \& \text { or } \frac{4.026-\mu}{\sigma}=1.0364 \\
\mu-1.2816 \sigma=3.968 \& (\text { Calc: }-1.28155156 \ldots) \\
\mu+1.0364 \sigma=4.026 \& (\text { Calc: } 1.03643338 \ldots) \\
2.318 \sigma=0.058 \& \\
\sigma=0.0250 \ldots \& \mu=4.00 \ldots
\end{array}
\]
\[
\text { awrt } \underline{0.025} \text { and } 4
\] \& \begin{tabular}{l}
M1A1A1 \\
dM1 \\
A1
\end{tabular} \\
\hline (b) \& \[
\begin{aligned}
\& \left.\left.Q_{3}=\text { awrt } 30.3 \text { (calc: } 30.337 \ldots\right) \text { or } Q_{3}-Q_{1}=\text { awrt } 0.6 \text { oe (calc: } 0.6744 \ldots\right) \\
\& 30.3+1.5(" 30.3 "-29.7)[=31.2] \text { or } 29.7-1.5(" 30.3 "-29.7)[=28.8]
\end{aligned} \begin{array}{r}
\begin{array}{r}
\mathrm{P}\left(L>" 31.2^{\prime \prime}\right)=\mathrm{P}\left(Z>\frac{" 31.2 "-30}{0.5}\right) \text { or } \mathrm{P}(L<" 28.8 ")=\mathrm{P}\left(Z<\frac{" 28.8 "-30}{0.5}\right) \\
=0.0082
\end{array} \\
\begin{array}{r}
\text { Probability it is an outlier }=2 \times 0.0082 \\
=0.0164 \quad \text { answer in range } \underline{(0.006 \sim 0.017)}
\end{array}
\end{array}
\] \& \begin{tabular}{l}
B1 \\
M1 \\
M1 \\
M1 \\
A1 \\
(5) \\
Total 10
\end{tabular} \\
\hline \& \multicolumn{2}{|l|}{Notes} \\
\hline (a) \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(1^{\text {st }} \mathrm{M} 1\) for standardising with \(\mu\) and \(\sigma\) and forming an equation in \(\mu\) and \(\sigma\) with \(|z|>1\) \\
\(1^{\text {st }} \mathrm{A} 1\) for one correct equation in any form with \(z\) value as given or better \\
\(2^{\text {nd }} \mathrm{A} 1\) for a \(2^{\text {nd }}\) correct equation in any form allow 2 dp or better for the \(z\) value \\
\(2^{\text {nd }}\) dM1 (dep on \(1^{\text {st }} \mathrm{M} 1\)) for correct method to solve* their 2 linear, simultaneous equations. \\
Can be implied by both correct answers. \\
[*Must see correct substitution or correct addition/subtraction of all 3 terms] \\
\(2^{\text {nd }} \mathrm{A} 1\) for both \(\mu=\) awrt 4 and \(\sigma=\) awrt 0.025 [Check it follows from their working.] \\
NB Could score M1A0A1M1A1 or M1A1A0M1A1 here \\
B1 awrt 30.3 or \(\mathrm{IQR}=\) awrt 0.6 or awrt 0.67 \\
\(1^{\text {st }} \mathrm{M} 1\) correct method for finding 1 outlier limit - ft their \(Q_{3}\) or their IQR \\
\(2^{\text {nd }}\) M1 standardising with their limit, 30 and 0.5 allow \(\pm\) leading to a probability \(<0.05\) \\
Can be implied by a correct probability statement e.g. \(\mathrm{P}(L<28.8)=0.0082\) \\
\(3^{\text {rd }}\) M1 multiplying their probability by 2 (or adding their two probs both \(<0.05\)) \\
A1 (dependent on all 3 M marks) for an answer in the range \(0.006 \sim 0.017\) \\
Use of full calc values: If they use a calculator the lower limit is \(28.651 \ldots\) upper limit is \\
31.3489 and probability comes to \(2 \times 0.00348835 \ldots=\) awrt 0.00698
\end{tabular}}} \\
\hline (b)

Calc \& \&

\hline
\end{tabular}

Question Number	Scheme						Marks	
7(a)(i)	$\begin{aligned} 2 a+2 b=0.5 \text { oe } ; 5 a+11 b & =1.55 \text { oe } \quad \text { (any unsimplified form) } \\ \text { e.g. } 5 a+11(0.25-a) & =1.55 \quad[\text { implies } 6 a=1.2 \text { oe] } \\ a & =0.2^{*} \end{aligned}$						$\begin{aligned} & \hline \text { B1; B1 } \\ & \text { M1 } \\ & \text { A1 cso } \\ & \text { B1 } \end{aligned}$	
(b)	$\left[\begin{array}{l}{\left[\mathrm{E}\left(X^{2}\right)=\right]} \\ \operatorname{Var}(X)=" \\ \operatorname{Var}(4 X+\end{array}\right.$	$5+2^{2}$ $5^{2}=$ 6 Var					$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
(c)	$\begin{aligned} \text { Expected profit } & =2.5 \times 60 \text { or } 2.5 \times 80-2.5 \times 20 \text { oe } \\ & =\underline{\mathbf{1 5 0}}(\text { cents } \text { or } \$ 1.50 \text { per customer } \end{aligned}$						$\begin{array}{\|l} \hline \text { M1 } \\ \text { A1 } \end{array}$	
(d)	Let W be the profit, in cents per customer							
		1	2	3	5	6	B1; B1	
	w	60	120	180	220	280		
	$\mathrm{P}(Y=y)$	$\frac{3}{40}$	$\frac{4}{40}$	$\frac{3}{40}$	$\frac{22}{40}$	$\frac{8}{40}$		
	$\begin{array}{r} {[\mathrm{E}(W)]=\frac{1}{40}(60 \times 3+120 \times 4+180 \times 3+220 \times 22+280 \times 8)} \\ =\quad \underline{\mathbf{2 0 7}} \text { cents per customer } \\ {[\text { May work in dollars e.g. } \$ 2.67 \text { or } \$ 2.27 \text { scores B1B0M1A0 and } \$ 2.074 / 4]} \end{array}$						M1 A1 (4) Total 15	
	Notes							
(a)(i)	Mark (a)(i) and (a)(ii) together $1^{\text {st }} \mathrm{B} 1$ for a correct equation using Σ prob $=1$ $2^{\text {nd }} \mathrm{B} 1$ for a correct equation using $\mathrm{E}(X)=2.5$ M1 dep on at least B1 for eliminating a or b leading to a linear equation in a or b only A1cso for $a=0.2$ correctly shown. Dependent on M1 scored and two correct equations seen. B1 for $b=0.05$ (or exact equivalent) Independent of other marks in (a)(i). Look by table $1^{\text {st }} \mathrm{M} 1$ for an attempt at $\mathrm{E}\left(X^{2}\right)$ with at least 3 correct products. Allow ft of their value of b Allow expression even if labelled $\operatorname{Var}(X)$ but label of $\operatorname{Var}(X)$ loses $2^{\text {nd }} \mathrm{M} 1$ but can get $3^{\text {rd }} \mathrm{M} 1$ $2^{\text {nd }} \mathrm{M} 1$ for use of $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \mathrm{ft}$ their value of $\mathrm{E}\left(X^{2}\right)$ $3^{\text {rd }}$ M1 for seeing $16 \operatorname{Var}(X)$ [Allow this mark if clearly stated $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)=8.4$] A1 for 34.4 or exact equivalent e.g. $\frac{172}{5}$ M1 for 2.5×60 or any other fully correct equivalent expression (allow 2.5×0.6) A1 for 150 or accept $\$ 1.5$ (working with dollars requires units) $1^{\text {st }} \mathrm{B} 1$ for $1^{\text {st }} 3$ values of W (can allow in an expression for $\mathrm{E}(W)$) Look by table but must $2^{\text {nd }} \mathrm{B} 1$ for last 2 values for W be in part (d) M1 for attempt at $\mathrm{E}(W) \mathrm{ft}$ their W values but at least 3 correct ft products Dependent on at least one of the first two B1 marks A1 for 207 Use of $\mathbf{E}(\boldsymbol{Y})[=4.45]$ with at least 3 correct products seen and $\mathrm{E}(W)=p \mathrm{E}(Y)-q$ $1^{\text {st }} \mathrm{B} 1$ for $p=60$ and $2^{\text {nd }} \mathrm{B} 1$ for $q=\left(\frac{22}{40}+\frac{8}{40}\right) \times 80$ (or 60) M1 for $\mathrm{E}(W)$ expression of the form above and dep on at least one B mark scored							
(ii)								
(b)								
(c)								
(d)								
ALT								

