

Mark Scheme (Standardisation)

January 2020

Pearson Edexcel International GCSE Mathematics A (4MA1) Paper 2H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Winter 2020 Publications Code xxxxxxx* All the material in this publication is copyright © Pearson Education Ltd 202

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

• Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

• Abbreviations

- cao correct answer only
- o ft follow through
- isw ignore subsequent working
- o SC special case
- oe or equivalent (and appropriate)

- dep dependent
- o indep independent
- o awrt answer which rounds to
- eeoo each error or omission

• No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

• With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.

If there is no answer on the answer line then check the working for an obvious answer.

• Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

• Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Intern	International GCSE Maths									
Apart	Apart from Questions 3, 7b, 12, 17, 20, 22 the correct answer, unless clearly obtained by an incorrect method, should be taken to									
imply	imply a correct method									
	Q	Working	Answer	Mark	Notes					
1	(a)		x^7	1	B1					
	(b)	eg $7^8 \times 7^4 = 7^{12}$ or $7^8 \div 7^3 = 7^5$ or $7^5 \times 7^4$ or $7^4 \div 7^3$ = 7 or $7^8 \times 7$ or $7^{12'} \div 7^3 = 7^{12'-3}$		2	M1 for one correct step – must be					
		= 7 or $7^8 \times 7$ or $7^{12} \div 7^3 = 7^{12} \to 7^3$			written as a power of 7					
			7 ⁹		A1 for 7^9					
					Total 3 marks					

2	32.4×100^3		2	M1	for 32.4×100^3 oe
		32 400 000		A1	for 32 400 000 accept 3.24×10^7
					Total 2 marks

3	$\frac{14}{3}(+)\frac{19}{5}$ or $(4)\frac{10}{15}(+)(3)\frac{12}{15}$ or $(4)\frac{10a}{15a}(+)(3)\frac{12a}{15a}$		3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator
	$eg \frac{14 \times 5 + 19 \times 3}{3 \times 5} \text{ or } \frac{70}{15} + \frac{57}{15} \text{ or } \frac{70a}{15a} + \frac{57a}{15a} \text{ or} 4\frac{10}{15} + 3\frac{12}{15} = 7\frac{22}{15} \text{ oe} $			M1	for correct fractions with a common denominator of 15 or a multiple of 15
	$\frac{70}{15} + \frac{57}{15} = \frac{127}{15} = 8\frac{7}{15} \text{ or } 7\frac{22}{15} = 8\frac{7}{15}$ or if shows $8\frac{7}{15} = \frac{127}{15}$ at the beginning then show that the addition comes to $\frac{127}{15}$	Shown		A1	dep on M2 for a correct answer from fully correct working or shows that RHS = $\frac{127}{15}$ and fully correct working shows LHS = $\frac{127}{15}$
					Total 3 marks

4	30 + 4x + 10 + x + 20 (= 5x + 60) or $180 - 30 (=150)$		4	M1	Allow $5x + 60 = n$ where $n \neq 180$ or for subtracting 30 from 180	M2 for 5x + 30 = 150 oe
	e.g. $30 + 4x + 10 + x + 20 = 180$ or $5x + 60 = 180$ oe or $180 - 30 - 10 - 20$ (=120)			M1	for setting up the equation or for subtracting all numerical values of angles from 180	
	$5x = `120' \text{ or } `120' \div 5$			M1	for correctly simplifying dividing '120' by 5	to $ax = b$ or for
		24		A1	for 24	
						Total 4 marks

5	Fully correct angle	2	B2	Fully correct angle bisector with all	
	bisector with all			arcs shown.	
	relevant arcs			B1 for all arcs and no angle bisector	
	shown			drawn or for a correct angle bisector	
				within guidelines but not arcs or	
				insufficient arcs	
				Total 2 marks	

6	1 - (0.24 + 0.31) (= 0.45)		4	M1	or for a correct equation for
	Or				missing values eg
	$(0.24 + 0.31) \times 180 (= 99)$				x + 0.24 + 2x + 0.31 = 1 oe
					(can be implied by 2 probabilities
					that total 0.45 in table if not
					contradicted in working space)
	'0.45' ÷ 3 (= 0.15)			M1	(or 0.15 correctly placed in table
	Or				as long as not contradicted)
	'0.45' × 180 (= 81)				
	Or				
	180 - 99 (= 81)				
	'0.15' × 180			M1	27 £
	Or				or for an answer of $\frac{27}{180}$
	'81' ÷ 3				100
		27		A1	
					Total 4 marks

7	(a)	2x > 4 - 7 or $x + 3.5 > 2$			2	M1 For a correct first step allow $2x = 4 - 7$ or $x + 3.5 = 2$ or an answer of $x = -1.5$ or $x < -1.5$ or -1.5
				x > -1.5		A1 for $x > -1.5$ oe
	(b)		$\frac{-(-3)\pm\sqrt{(-3)^2-4\times1\times(-40)}}{2\times1}$ or $\frac{3\pm\sqrt{9+160}}{2}$			M1 or $(x + a)(x + b)$ where $ab = -40$ or $a + b = -5$ OR correct substitution into quadratic formula (condone one sign error in <i>a</i> , <i>b</i> or <i>c</i> and missing brackets) (if + rather than ± shown then award M1 only unless recovered with answers)
		(x-8)(x+5)	$\frac{3\pm\sqrt{169}}{2}$ or $\frac{3\pm13}{2}$			M1 $\frac{3\pm\sqrt{169}}{2}$ or $\frac{3\pm13}{2}$
				8, -5	3	A1 dep on at least M1 for correct values
						Total 5 marks

8 (a)	545 – 500 (= 45) or 592 – 545 (= 47)		4	M1	may be seen as part of a calcula	ation
	$\frac{45}{500} \times 100 (=9) \text{ or } \frac{47}{545} \times 100 (=8.6)$			M1	for one correct expression (allo correct expression for 8.6 throu	
	$\frac{45}{500} \times 100 (=9)$ and $\frac{47}{545} \times 100 (=8.6)$			M1	for both correct expressions or finds 109% of 545: 1.09 × 545(545 (49.05) or having found "8 500: 1.086 × 500(=543) or 8.69	(=594.05) or 9% of 8.6%" finds 108.6% of
		No, 9(%) and 8.6(%)		A1	for no oe, 9% and 8.6% seen of no oe and 9% and 594.05 or 8.0 No, 49.05 > 45 or No 594.05 >	r 6% and 543 or
Alternative	e mark scheme for 8(a)					
	$\frac{545}{500} \times 100(=109) \text{ or } \frac{545}{500}(=1.09) \text{ or}$ $\frac{592}{545} \times 100(=108.6) \text{ or } \frac{592}{545}(=1.086)$ $\frac{545}{500} \times 100(=109) \text{ or } \frac{545}{500}(=1.09) \text{ and}$		4	M3	for both correct expressions wh 109 or 1.09 and 108.6 or 1.086 (allow 108 or 108.7 from corre or 1.08 or 1.087 from correct w throughout)	ct working for 108.6
	$\frac{545}{500} \times 100(=109) \text{ or } \frac{545}{500}(=1.09) \text{ and}$ $\frac{592}{545} \times 100(=108.6) \text{ or } \frac{592}{545}(=1.086)$				(if not M3 then award M2 for c expressions)	one of these
		No, 109(%) and 108.6(%)		A1	oe eg no and 1.09 and 1.086	
(b)	952 ÷ 85 × 100 oe (=1120)		3	M1	for a method to find price before discount	M2 for $\frac{952}{85} \times 15$
	0.15 × "1120" or "1120" – 952 oe			M1	for a correct method to find discount	
		168		A1		•
						Total 7 marks

9	19.3 × 150		2	M1	for 19.3 × 150
		2895		A1	for 2895
					Total 2 marks

10	50 × 60 (= 3000) or 50 ÷ 1000 (= 0.05 or $\frac{1}{20}$)		3	M1	for 50 with at least one of \div 1000 or \times 60
	or 50 × 60 × 60 (= 180 000) or				or
	$\frac{\text{or}}{\frac{60 \times 60}{1000}} (= 3.6)$				$\frac{60 \times 60}{1000} (= 3.6)$
	or				or
	$1000 \div 60 \div 60 (= 0.27777 \text{ or } \frac{5}{18})$				$1000 \div 60 \div 60$
	$50 \times \frac{60 \times 60}{1000}$ oe eg $50 \div \frac{5}{18}$			M1	(dep) for a complete method
		180		A1	for 180 (SCB1 for both conversion factors correct but applying them wrongly eg $\frac{50 \times 1000}{60 \times 60}$)
					Total 3 marks

11	$(AC^2 =) 17^2 - 15^2$		5	M1	
	$(AC =)\sqrt{17^2 - 15^2} (=\sqrt{64} = 8)$			M1	
	$\frac{\pi \times 8'}{2} (=4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times 8'}{2}$ oe or 4π
	·12.566'+ 15 + 17			M1	12.5663 for '12.566' + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks
Alternative n	nark scheme for 11				
	$\cos^{-1}\left(\frac{15}{17}\right) (= 28.0724) \text{ or } \sin^{-1}\left(\frac{15}{17}\right) (= 61.9275)$		5	M1	for a correct method to find one of the angles
	$15 \times \tan(28.0724) = 8$ or $15 \div \tan(61.9275) = 8$			M1	
	$\frac{\pi \times 8'}{2} \ (= 4\pi = 12.566)$			M1	dep on M2 for $\frac{\pi \times 8'}{2}$ or 12.5663 or 4π
	"12.566" + 15 + 17			M1	for "12.566" + 15 + 17 and no additional values
		44.6		A1	for awrt 44.6
					Total 5 marks

12	Litres per amount of money and then conversion		
	$\frac{8.6 \times 10^5}{770000} (=1.1168) l/\$$		M1 Number of litres per \$ for D
	$\frac{4.2 \times 10^5}{2500000} (=0.168) l/k$		M1 Number of litres per Krone for A
	A: $l/\$$ to l/k '1.1168' \div 6.57 (= 0.1699)or D: l/k to $l/\$$ '0.168' \times 6.57 (= 1.103)		M1 l /\$ to l /k for A or l /k to l /\$ for D
		Arctic Oil and relevant figures	A1 for Arctic Oil with 1.1168 and 1.10376 or 0.168 and 0.1699
	Conversion then litres per amount of money		
	$\frac{2500000}{6.57} (=380517.5) \text{ or } 770\ 000 \times 6.57 (=505\ 8900)$		M1 Changing Krone to \$ or \$ to Krone
	$\frac{4.2 \times 10^5}{2500000} (=0.168) \text{ or } \frac{4.2 \times 10^5}{'380517.5'} (=1.103)$		M1 Litres per Krone or litres per \$ for D
	$\frac{8.6 \times 10^5}{770000} (=1.1168) \text{ or } \frac{8.6 \times 10^5}{'5058900'} (=0.1699)$		M1 Litres per Krone or litres per \$ for A
		Arctic Oil and	A1 for Arctic Oil with 1.1168 and
		relevant figures	1.10376 or 0.168 and 0.1699
	Cost per litre then conversion		
	$\frac{2500000}{4.2\times10^5}(=5.952)$		M1 Price per litre in Krone for D
	$\frac{770000}{8.6\times10^5}(0.895)$		M1 Price per litre in \$ for A
	$(5.952' \div 6.57(=0.9059) \text{ or } (0.895' \times 6.57(=5.882))$		M1 Conversion of Krone to \$ or \$ to Krone
		Arctic Oil and relevant figures	A1 For Arctic Oil with 5.952 and 5.882 or 0.895 and 0.9059

Conversion then cost				
$\frac{2500000}{6.57} (= 380517.5$	or 770 000 × 6.57(= 505 8900)		M1	Changing Krone to \$ or \$ to Krone
$\frac{2500000}{4.2\times10^5}$ (= 5.952) or	$\frac{'380517.5'}{4.2\times10^5} (=0.9059)$		M1	Cost per litre in Krone or cost per litre in \$ for D
$\frac{770000}{8.6 \times 10^5} (= 0.895)$ or	$\frac{5058900'}{8.6 \times 10^5} (= 5.882)$		M1	Cost per litre in \$ or cost per litre in Krone for A
		Arctic Oil and relevant figures	A1	For Arctic Oil with 5.952 and 5.882 or 0.895 and 0.9059
Comparing equal ame	ounts			
$\frac{8.6 \times 10^5}{4.2 \times 10^5} (=\frac{43}{21} = 2.047)$) $\frac{4.2 \times 10^5}{8.6 \times 10^5} (= \frac{21}{43} = 0.488)$		M1	Multiplier for same amount of D as A or same amount of A as D
'2.047'×2500 000 K (=5119047.619)K	`2.047' × 770 000 \$ (=376046.511)\$		M1	Cost of equal amount of D as A or A as D
'5119047.619'÷6.57 = 779154.88\$ or 770 000×6.57=505890	^{•376046.511'× 6.57} =2470625.58K or 0 K 2500 000÷6.57 = 380517\$		M1	Converts so can compare costs – either K to \$ or original A to K or \$ to K or original D to \$
		Arctic Oil and relevant figures	A1	Arctic Oil and 779154 or with 2470625(figures may be rounded) Or Arctic Oil with 5119047 and 5058900 or with 376046 and 380517
Students may compare other equ	al amounts – please use the scheme	that best fits their meth	nod and a	
	-			Total 4 marks

13	Angle $CAD = 28^{\circ}$ or angle $ACB = 32^{\circ}$ or		4	M1	
	angle $ACD = 90^{\circ}$ or angle $ABD = 90^{\circ}$ Angles in the same segment are equal,	30°		A1 B2	For a correct answer of 30 Dep on M1 for all correct reasons
	angle in a semicircle is 90° (or angle at centre is double angle at circumference oe) angles in a triangle add up to 180°/angles in a triangle isosceles triangle alternate angles vertically opposite angles (or vertically opposite) angles at a point opposite angles in a cyclic quadrilateral angle between tangent and radius (diameter) alternate segment theorem angles subtended by the same arc(or chord) at the circumference (or on the circle)				for their method used (if not B2 then award B1(dep on M1) for a correct circle theorem reason)
					Total 4 marks

14 (a)			2	B1	for $\frac{13}{20}$ and $\frac{7}{20}$ on the first branch (0.65 and 0.35)
		Correct probabilities on the tree diagram		B1	for $\frac{12}{19}$, $\frac{7}{19}$, $\frac{13}{19}$ and $\frac{6}{19}$ on the second branch (accept 2 dp or better 0.6315, 0.3684, 0.6842, 0.3157)
(b)	$\frac{7}{20} \times \frac{6}{19}$ oe only		2	M1	ft from (a) as long as probabilities less than 1
	$\frac{21}{190}$	$\frac{21}{190}$		A1	for $\frac{21}{190}$ oe or 0.11 (at least 2 dp)
					Total 4 marks

15	С, В, Е	3	B3	for all 3 correct	
			(B2	for 2 correct)	
			(B1	for 1 correct)	
					Total 3 marks

16	$y^2 = \frac{x+1}{x-4}$		4	M1 for squaring
	$y^{2}(x-4) = x+1$ or $y^{2}x-4y^{2} = x+1$			M1 for removing the fraction
	$y^{2}x - x = 4y^{2} + 1$ or $-4y^{2} - 1 = x - y^{2}x$ or $x(y^{2} - 1) = 4y^{2} + 1$ or $-4y^{2} - 1 = x(1 - y^{2})$			M1 for expanding the bracket and rearranging for x so that the terms in x are on one side of the correct equation
		$x = \frac{4y^2 + 1}{y^2 - 1}$		A1 for $x = \frac{4y^2 + 1}{y^2 - 1}$ or $x = \frac{-4y^2 - 1}{1 - y^2}$ (need to see x = somewhere)
				Total 4 marks

					Total 3 marks
					SCB1 for eg $(2n)^2 - (2n-1)^2$ or $(2n+1)^2 - (2n)^2$ oe
		e.g. $2n - 1$ is always odd		A1	dep on M2 for eg $2n - 1$ or $2n + 1$ or $-(2n + 1)$ oe and a suitable conclusion
	e.g. $n^2 - n^2 + 2n - 1$ or $n^2 + 2n + 1 - n^2$			M1	Correct expansion of brackets and correct signs or a correct result
17	e.g. $n^2 - (n-1)^2$ or $(n+1)^2 - n^2$		3	M1	for setting up a correct algebraic expression (any letter can be used)

18 (a)	$(0.7 \times 10) + (3.4 \times 5) + (1 \times 9) + (2.5 \times 6) + (4.8 \times 15)$ = 7 + 17 + 9 + 15 + 72 (= 120) no. of sml squares = $(10 \times 7) + (5 \times 34) + (9 \times 10) + (6 \times 25) + (15 \times 48)$ = 70 + 170 + 90 + 150 + 720 (= 1200) or all correct values in bars oe not added		3	M1	for a correct method to work out the total area eg total frequency or number of small squares or other correct method (allow one error in method) [count use of 25 for 24 as one error] or all correct values in bars oe not added
	$(1 \times 7) + (2.5 \times 6) + (5 \times 4.8) = 7 + 15 + 24 (= 46)$ or no. of sml squares $(48 \times 5) + (6 \times 25) + (7 \times 10) = 240 + 150 + 70 (= 460)$			M1	for a correct method to work out the area between 17 minutes and 35 minutes eg using frequency density or number of small squares oe
	$\frac{46}{120}$	$\frac{46}{120}$		A1	for $\frac{46}{120}$ oe (allow 2 dp or better 0.3833 or 38% or better)
(b)			2	M1	for $\frac{n}{15}$ where $n < 15$ or $\frac{q}{720}$ where $q < 720$ or $\frac{r}{72}$ where $r < 72$ or $\frac{9}{m}$ where $m > 9$ or $\frac{432}{p}$ where $p > 432$ $\frac{43.2}{t}$ where $t > 43.2$
		$\frac{9}{15}$		A1	$\frac{9}{15}$ oe
					Total 5 marks

19 (a)		y = -4x + k (oe)	1	B1	for $y = -4x$ or $y = -4x + k$ where k is any numerical value $k \neq 7$ Could be written in another form e.g. $3y + 12x = 20$
(b)	$m = \frac{-2-1}{2-3}$ or $m = \frac{1-2}{-3-2}$ or $-\frac{3}{5}$ or -0.6		4	M1	for using $m = \frac{y_2 - y_1}{x_2 - x_1}$
	$m_p = \frac{5}{3}$			M1ft	for using $m_1 \times m_2 = -1$
	$4 = \frac{5}{3}(-6) + c \text{ oe eg } 4 = -10 + c \ (c = 14)$ $y - 4 = \frac{5}{3}(x6)$			M1ft	dep on previous M1 for substituting (-6, 4) into linear equation formula $4 = \frac{5}{3}x + c \text{ to find value of } c \text{ or}$ $y = \frac{5}{3}x + 14 \text{ or } y = 1.66x + 14$
		Eg = 5x - 3y + 42 = 0		A1	for correct simplified equation where all values are integers 10x - 6y + 84 = 0 or 3y = 5x + 42 oe
					Total 5 marks

20	$\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$		3	M1 for $\frac{18}{\sqrt{7}+1} \times \frac{\sqrt{7}-1}{\sqrt{7}-1}$
	eg $\frac{18(\sqrt{7}-1)}{7-1}$			M1 Dep on M1 for a correct numerator and multiplying out the denominator to 7 – 1 or 6
	$3\sqrt{7}-3$	$3\sqrt{7} - 3$		A1 Dep on M2 Allow 3 $\sqrt{7}$ -1
				Total 3 marks

21	(a)(i)		(0, 6)	2	B1	
	(iii)		(2, 6)		B1	
		eg $(x-4)^2 + 3(x-4) + 4$ oe or eg $(x+\frac{3}{2}-4)^2 - \frac{9}{4} + 4$ oe or eg $x^2 + 3x + 10$ oe or eg $(x+\frac{3}{2})^2 - \frac{9}{4} + 4 + 6$ oe eg $y - 6 = x^2 + 3x + 4$		2	M1	for applying one of the transformations to the equation
			$y = (x - 4)^{2} + 3(x - 4) + 10$ or $y = (x + \frac{3}{2} - 4)^{2} - \frac{9}{4} + 4 + 6$		A1	oe eg $y = (x - \frac{5}{2})^2 + \frac{31}{4}$ or $y = x^2 - 5x + 14$ oe <i>Total 4 marks</i>

22	$x^{2} + (x+2)^{2} - 2(x+2) = 24$		5	M1	for substituting linear equation into the
					quadratic equation
	$2x^2 + 2x - 24$ (=0) or $x^2 + x - 12$ (=0)			A1	for a correct equation in the form
	or $2x^2 + 2x = 24$ or $x^2 + x = 12$				$ax^2 + bx + c = 0 \text{ or } ax^2 + bx = -c$
	(x+4)(x-3) (= 0) or			M1ft	dep on M1 for solving their quadratic equation
	$-1+\sqrt{1^2-(4\times 1\times -12)}$				using any correct method (allow one sign error
	$x = \frac{-1 \pm \sqrt{1^2 - (4 \times 1 \times -12)}}{2 \times 1}$ or				and some simplification – allow as far as
					$-1\pm\sqrt{1+48}$
	$\left(x-\frac{1}{2}\right)^2 - \left(\frac{1}{2}\right)^2 - 12 = 0$				$\frac{-1\pm\sqrt{1+48}}{2}$) or if factorising, allow brackets
	$\left[\left(\frac{x-2}{2} \right)^{-1} \left(\frac{2}{2} \right)^{-12} = 0 \right]$				which expanded give 2 out of 3 terms correct)
	x = -4 and $x = 3$			A1	for both <i>x</i> values dep on M1
	(-4, -2) and $(3, 5)$	(-4, -2) and $(3, 5)$		Al	for both solutions dep on M1
Alternativ	ve mark scheme for 22	(4, 2) and $(5, 5)$		111	
Alternativ			5	M1	for substituting linear equation into the
	$(y-2)^2 + y^2 - 2y = 24$		5	1111	quadratic equation
	$2y^2 - 6y - 20$ (=0) or $y^2 - 3y - 10$ (=0)			Al	for a correct equation in the form
	$2y^{2} - 6y = 20 \text{ (-0) of } y^{2} - 3y = 10 \text{ (-0)}$			AI	$ay^2 + by + c = 0$ or $ay^2 + by = -c$
	$\frac{2y}{(y-5)(y+2)} = 0 \text{ or}$			M1ft	
				IVIIII	using any correct method (allow one sign error
	$y = \frac{-3 \pm \sqrt{(-3)^2 - (4 \times 1 \times -10)}}{2 \times 1}$ or				and some simplification – allow as far as
	$y = \frac{2 \times 1}{2}$ or				and some simplification – anow as far as $2 + \sqrt{2 - 40}$
	$(2)^2 (2)^2$				$\frac{3 \pm \sqrt{9 + 40}}{2}$) or if factorising, allow brackets
	$\left(y-\frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2 - 10 = 0$				2
					which expanded give 2 out of 3 terms correct
	y = 5 and y = -2			A1	for both y values dep on M1
	(-4, -2) and $(3, 5)$	(-4, -2) and $(3, 5)$		A1	for both solutions dep on M1
					Total 5 marks

23	$\overrightarrow{PM} = -\frac{3}{2}\mathbf{a} - \frac{3}{4}\mathbf{b} + 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a})\left(=\frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}\right)$ $\overrightarrow{AM} = 4\mathbf{a} + \frac{1}{2}(2\mathbf{b} - 4\mathbf{a})(= 2\mathbf{a} + \mathbf{b})$ $\overrightarrow{AM} = 2\mathbf{b} + \frac{1}{2}(4\mathbf{a} - 2\mathbf{b})(= 2\mathbf{a} + \mathbf{b})$ $\overrightarrow{MA} = \frac{1}{2}(2\mathbf{b} - 4\mathbf{a}) - 2\mathbf{b}(= -2\mathbf{a} - \mathbf{b})$ $\overrightarrow{MA} = \frac{1}{2}(4\mathbf{a} - 2\mathbf{b}) - 4\mathbf{a}(= -2\mathbf{a} - \mathbf{b})$ $(AP : PM =) \left \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}\right : \left \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}\right \text{ oe}$ $(AP : AM =) \left \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}\right : \left 2\mathbf{a} + \mathbf{b}\right (= 3 : 4) \text{ oe}$ $(AM : PM =) \left 2\mathbf{a} + \mathbf{b}\right : \left \frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}\right (= 4 : 1) \text{ oe}$		3	M1 for finding \overrightarrow{PM} or \overrightarrow{AM} or \overrightarrow{MA} M1 For use of a correct ratio or fraction linking AP and PM or AP and AM or AM and $PM(in either order)vectors must be in form p\mathbf{a} + q\mathbf{b}$
	$AP = 3PM \text{ oe eg } \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b} = 3(\frac{1}{2}\mathbf{a} + \frac{1}{4}\mathbf{b}) \text{ oe}$ $AM = \frac{4}{3}AP \text{ oe}$ $AM = 4PM \text{ oe}$	3 : 1		A1
				Total 3 marks

$\frac{2x+3}{(2x-5)(2x-3)} \times \frac{(3x-1)(2x-5)}{x(3-2x)(3+2x)}$ M1 may be partially simplified $\frac{3x-1}{x(2x-3)(3-2x)}$ A1 e.g. $\frac{3x-1}{x(2x-3)(3-2x)}$ $\frac{3x-1}{x(2x-3)(3-2x)}$ or $\frac{1-3x}{x(2x-3)^2}$ or $\frac{3x-1}{x(12x-9-4x^2)}$ or $\frac{3x-1}{x(12x-9-4x^2)}$ or $\frac{3x-1}{(12x^2-9x-4x^3)}$ oeisw for incorrect denominatorisw for incorrect denominator	24	$\frac{4(2x-3)-3(2x-5)}{(2x-5)(2x-3)} \text{ or } \frac{8x-12-6x+15}{(2x-5)(2x-3)} \text{ oe}$ $x(3-2x)(3+2x) \text{ or } (3x-1)(2x-5)$		4	M1 M1	Writing 1st fraction as a fraction over a common denominator (can be 2 separate fractions) Complete factorisation of numerator or denominator of 2nd
$\overline{x(2x-3)(3-2x)}$ $\overline{x(2x-3)(3-2x)}$ or $\frac{3x-1}{x(2x-3)^2}$ or $\frac{1-3x}{x(2x-3)^2}$ or $\frac{3x-1}{x(12x-9-4x^2)}$ or $\frac{3x-1}{(12x^2-9x-4x^3)}$ oe isw for incorrect denominator expansion		$\frac{2x+3}{(2x-5)(2x-3)} \times \frac{(3x-1)(2x-5)}{x(3-2x)(3+2x)}$			M1	fraction
			$\frac{3x-1}{x(2x-3)(3-2x)}$		A1	$\frac{3x-1}{x(2x-3)(3-2x)} \text{ or}$ $\frac{1-3x}{x(2x-3)^2} \text{ or}$ $\frac{3x-1}{x(12x-9-4x^2)} \text{ or}$ $\frac{3x-1}{(12x^2-9x-4x^3)} \text{ oe}$ isw for incorrect denominator

25	n = 50		3	B1
	$33125 = \frac{50}{2} [2 \times 50 + (50 - 1) \times k] \text{ oe}$ 33125 = 25 [100 + 49k] oe 1325 = 100 + 49k oe 1225 = 49k oe			M1 For correct equation, using formula with $a = 50$ and $n = 50$ substituted (for this mark, allow $n = 49$) (k may be written as d)
		25		A1
				Total 3 marks

26	$1600 = \frac{1}{3} \times \pi \times r^2 \times 25 \text{ oe}$		6	M1	for substituting into volume formula for cone correctly and equating to 1600
	eg $r = \sqrt{\frac{1600}{\frac{1}{3}\pi \times 25}}$ or			M1	dep for correct rearrangement of volume formula for <i>r</i>
	$r = \sqrt{\frac{192}{\pi}} (= \sqrt{61.1(154)} = 7.8176)$				
	$l = \sqrt{"7.817"^2 + 25^2} (= \sqrt{686.1154} = 26.193)$			M1	Dep on M2 correct method to find slant height of cone (radius of sector)
	$2 \times \pi \times$ "7.817" (= 49.1196)			M1	for using $C = 2\pi r$ oe using figures from correct method
	or				or
	$\pi \times$ "7.817"×"26.193"(=643.315)				for using $A = \pi r l$ using figures from correct method
	"49.1196" = $2 \times \pi \times$ "26.193" $\times \frac{x}{360}$			M1	for using arc length = $2\pi r \times \frac{x}{360}$
	or				or
	"643.315" = $\pi \times$ "26.193" ² $\times \frac{x}{360}$				for using area of sector =
	360				$\pi r^2 \times \frac{x}{360}$
		107°		A1	for 107° - 108°
					Total 6 marks