edexcel 쁯

Pearson Edexcel

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced
Level In Core Mathematics C34 (WMA02)
Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code WMA02_01_2001_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2020

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 125
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- d... or dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- \square or d... The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
& \left(x^{2}+b x+c\right)=(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
& \left(a x^{2}+b x+c\right)=(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^{2}+b x+c=0:\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c=0, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$

2. Integration

Power of at least one term increased by 1. ($x^{n} \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does not cover this, please contact your team leader for advice.

Question Number	Scheme	Marks
2(a)	$\left(\frac{1}{4}-3 x\right)^{\frac{1}{2}}=\frac{1}{2}(1 \pm \ldots)^{\frac{1}{2}} \quad$Takes out a common factor of $\sqrt{\left(\frac{1}{4}\right)}$ or $\frac{1}{2}$ or equivalent e.g. $\frac{1}{\sqrt{4}},\left(\frac{1}{4}\right)^{\frac{1}{2}}, 2^{-1}, 4^{-\frac{1}{2}}$ to give $\frac{1}{2}(1 \pm \ldots)^{\frac{1}{2}}$ oe	B1
	$(1-12 x)^{\frac{1}{2}}=1-\left(\frac{1}{2}\right) 12 x+\frac{\left(\frac{1}{2}\right) \times\left(\frac{1}{2}-1\right)}{2!} \times(-12 x)^{2}+\frac{\left(\frac{1}{2}\right) \times\left(\frac{1}{2}-1\right) \times\left(\frac{1}{2}-2\right)}{3!} \times(-12 x)^{3}$ For the binomial expansion of $(1+a x)^{\frac{1}{2}}$ where $a \neq-3$ Award for a correct structure for term three and/or term 4 (allow $\pm^{‘} 12^{\prime} x$) Condone the omission of brackets. E.g. allow $\frac{\frac{1}{2} \times \frac{1}{2}-1 \times \frac{1}{2}-2}{3!} \times 12 " x^{3}$ for term 4	M1
	$\begin{gathered} (1-12 x)^{\frac{1}{2}}=1-\left(\frac{1}{2}\right) 12 x+\frac{\left(\frac{1}{2}\right) \times\left(\frac{1}{2}-1\right)}{2!} \times(-12 x)^{2}+\frac{\left(\frac{1}{2}\right) \times\left(\frac{1}{2}-1\right) \times\left(\frac{1}{2}-2\right)}{3!} \times(-12 x)^{3} \\ \quad \text { or } \\ (1-12 x)^{\frac{1}{2}}=1-6 x-18 x^{2}-108 x^{3}-\ldots \end{gathered}$ This mark is for a correct unsimplified or simplified expansion of $(1-12 x)^{\frac{1}{2}}$ If unsimplified, the brackets must be present where necessary unless they are implied by subsequent work. Allow $(12 x)^{2}$ for term 3 .	A1
	= $\frac{1}{2}-3 x-9 x^{2}-54 x^{3}+\ldots \quad$ Any 2 correct simplified terms	A1
	$\frac{1}{2}-3 x-9 x-54 x+\ldots \quad$ All correct and simplified	A1
	Special case: If all the working is correct but the brackets are not removed e.g. $\frac{1}{2}\left(1-6 x-18 x^{2}-108 x^{3}-\ldots\right)$ Score B1M1A1A1A0	
		(5)
(a) Way 2 $\underset{\text { Expansion) }}{\text { (Diret }}$	$\left(\frac{1}{4}-3 x\right)^{\frac{1}{2}}=\left(\frac{1}{4}\right)^{\frac{1}{2}}+\frac{1}{2}\left(\frac{1}{4}\right)^{-\frac{1}{2}}(-3 x)+\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right)}{2!}\left(\frac{1}{4}\right)^{-\frac{3}{2}}(-3 x)^{2}+\frac{\left(\frac{1}{2}\right) \times\left(-\frac{1}{2}\right) \times\left(-\frac{3}{2}\right)}{3!}\left(\frac{1}{4}\right)^{-\frac{5}{2}}(-3 x)^{3}+\ldots$ B1: For first term $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or as defined above M1: For a correct structure for term three and/or term 4. (allow $\pm 3 x$) A1: Correct and unsimplified binomial expansion. The brackets must be present where necessary unless they are implied by subsequent work.	B1
		M1
		A1
	1 $-3 x-9 x^{2}-54 x^{3}+\ldots$ Any 2 correct simplified terms	A1
	$\frac{1}{2}-3 x-9 x^{2}-54 x+\ldots \quad$ All correct and simplified	A1
(b)	$\sqrt{22} \approx 10\left(\frac{1}{2}-\frac{3}{100}-\frac{9}{10000}-\frac{54}{1000000}\right)$ Substitutes $x=\frac{1}{100}$ into their expansion and multiplies by 10 to obtain a value. You may need to check if no working is shown.	M1
	$(\sqrt{22}=) 4.6905 \quad$ Correct value only	A1
		(2)
		[7 marks]

Question Number	Scheme						Marks
3(a)							M1
	x	4	4.5	5	5.5	6	
	y	$\frac{10}{1+\sqrt{4}}$	$\frac{10}{1+\sqrt{4.5}}$	$\frac{10}{1+\sqrt{5}}$	$\frac{10}{1+\sqrt{5.5}}$	$\frac{10}{1+\sqrt{6}}$	
	y	$\frac{10}{3}$	$\frac{-20+30 \sqrt{2}}{7}$	$\frac{-5+5 \sqrt{5}}{2}$	$\frac{-20+10 \sqrt{22}}{9}$	$-2+2 \sqrt{6}$	
	y	3.33333.	3.20377...	3.09016...	2.98935...	2.89897..	
	Attempts at least 3 values for y as shown. Either in exact or decimal form. Must be accurate to 2dp for decimals unless implied by the correct answer later						
	$h=0.5$			Correct strip width. May be implied by their x values.			B1
	$\text { Area } \approx \frac{0.5}{2}\{3.333+2.899+2 \times(3.204+3.090+2.989)\}=\ldots$ Fully correct application of the trapezium rule e.g. $\frac{h}{2}\{\text { Correct } y \text { value structure }\}$ Allow a correct y value structure for their y values but must be for at least $3 x$ values that include y values at $x=4$ and $x=6$ $\text { E.g. } \approx \frac{1}{2}(1)\{3.333+2.899+2 \times(3.090)\}=\ldots \text { scores M1B0M1A0 }$						M1
	$=6.20$			Allow awrt 6.20 but also allow 6.2 but not awrt 6.2			A1
	- In (b) the method must be made clear as required by the question - Correct or correct ft answers with no working score no marks - Attempts to use the trapezium rule again score no marks - NB integration/calculator gives (i) 18.5925... (ii) $\mathbf{1 2 . 1 9 7 5} \ldots$						(4)
(b)							
(i)	$\begin{gathered} " 6.20 " \times 6=\ldots \\ \text { or } \end{gathered}$ $" 6.20 " \div 2=\ldots$ or $\text { " } 6.20 " \times 3=\ldots$			Allow for any one of: - Answer to (a) $\times 6$ only - Answer to (a) $\div 2$ only - Answer to (a) $\times 3$ only (Not necessarily evaluated)			M1
	18.60			Answer to $(a) \times 3$. If correct, allow awrt 18.6. For ft be generous and allow answers that are clearly (a) $\times 3$			A1ft
(ii)	$\int_{4}^{6} \frac{13+3 \sqrt{x}}{1+\sqrt{x}} \mathrm{~d} x=46.20 "+6=.$.			Their (a) value +6 . Note that it is acceptable for the " 6 " to come from $\int_{4}^{6} 3 \mathrm{~d} x$			M1
	12.20			Answer to (a) +6 . If correct, allow awrt 12.2. For ft be generous and allow answers that are clearly (a) +6			A1ft
							(4)
							[8 marks]

Question Number	Scheme		Marks		
4(a)	A V-shape anywhere. (Ignore gradient as long as it is a V shape) Do not be overly concerned by lack of symmetry and ignore any extra dashed or dotted lines.				B1

Question Number	Scheme		Marks
5(a)	$\mathrm{f}(x) \leqslant 27$	$\begin{aligned} & \text { Allow } y \leqslant 27 \text {, range } \leqslant 27,(-\infty, 27], \\ & \mathrm{f} \leqslant 27 \text { but not } x \leqslant 27 \end{aligned}$	B1
			(1)
	Mark (i) and (ii) together		
(b)(i)	$9+3 x=0 \Rightarrow x=-3$	$x=-3$. Allow $x=-\frac{9}{3}$	B1
(ii)	$\begin{aligned} & \mathrm{f}(12)=0 \Rightarrow B-144 A=0 \\ & \text { or } \\ & \mathrm{f}(6)=27 \Rightarrow B-36 A=27 \end{aligned}$	$\begin{aligned} & \text { Uses } x=12 \text { and } y=0 \text { or } \\ & x=6 \text { and } y=27 \text { in } y=B-A x^{2} \\ & \text { (i.e. uses } x=6 \text { in } B-A x^{2}=9+3 x \text {) } \end{aligned}$	M1
	$\begin{aligned} & \mathrm{f}(12)=0 \Rightarrow B-144 A=0 \\ & \text { and } \\ & \mathrm{f}(6)=27 \Rightarrow B-36 A=27 \\ & \Rightarrow A \end{aligned}=\ldots, B=\ldots$	$\begin{aligned} & \text { Uses } x=12 \text { and } y=0 \text { and } \\ & x=6 \text { and } y=27 \text { in } y=B-A x^{2} \\ & \text { (i.e. uses } x=6 \text { in } B-A x^{2}=9+3 x \text {) } \\ & \text { and obtains values for } A \text { and } B \end{aligned}$	M1
	$A=\frac{1}{4}, B=36$	Correct values	A1
			(4)
(c)	$\mathrm{ff}(0)=\mathrm{f}(9)=36-\frac{9^{2}}{4}=\frac{63}{4}$	Attempts $B \pm A \times 9^{2}$ with their values of A and B	M1
		15.75 oe (15.8 scores A0 unless 15.75 is seen earlier then isw)	A1
			(2)
			[7 marks]

Question Number	Scheme	Marks
6.	$\int y \mathrm{~d} y=\int 4 x \ln x \mathrm{~d} x \text { or e.g. } \int \frac{y}{4} \mathrm{~d} y=\int x \ln x \mathrm{~d} x$ Separates the variables． Allow without the integral signs but must include the $\mathrm{d} x$ and $\mathrm{d} y$ unless they are implied by subsequent work．	B1
	$\int k x \ln x \mathrm{~d} x \rightarrow A x^{2} \ln x-\int \frac{B x^{2}}{x} \mathrm{~d} x$ This mark is for applying integrating by parts to the RHS to obtain an expression of this form	M1
	$\int y \mathrm{~d} y=\frac{y^{2}}{2}(+c) \text { or } \int \frac{y}{4} \mathrm{~d} y=\frac{y^{2}}{8}(+c) \quad \begin{aligned} & \text { Integrates the LHS correctly with or } \\ & \text { without " }+c " \end{aligned}$	B1
	$\begin{aligned} & \int 4 x \ln x \mathrm{~d} x=2 x^{2} \ln x-x^{2}(+c) \\ & \int x \ln x \mathrm{~d} x=\frac{x^{2}}{2} \ln x-\frac{x^{2}}{4}(+c) \end{aligned}$ Integrates the RHS correctly with or without＂$+c$＂	A1
	$\begin{array}{c\|l} \frac{4^{2}}{2}=2(1)^{2} \ln 1-(1)^{2}+c \Rightarrow c=\ldots & \begin{array}{l} \text { Substitutes } x=1 \text { and } y=4 \text { into an } \\ \text { equation formed from some } \\ \text { or e.g. } \end{array} \\ \text { integration in an attempt to find } c \end{array}$	M1
	$\begin{aligned} & x=\mathrm{e} \Rightarrow \frac{y^{2}}{2}=2 \mathrm{e}^{2} \ln \mathrm{e}-\mathrm{e}^{2}+9 \Rightarrow y^{2}=\ldots \text { or } y=\ldots \\ & x=\mathrm{e} \Rightarrow \frac{y^{2}}{8}=\frac{\mathrm{e}^{2}}{2} \ln \mathrm{e}-\frac{\mathrm{e}^{2}}{4}+2.25 \Rightarrow y^{2}=\ldots \text { or } y=\ldots \end{aligned}$ Dependent upon both M＇s．Scored for a full method to find y or y^{2} when $x=\mathrm{e}$	ddM1
	$y=\sqrt{2 \mathrm{e}^{2}+18} \quad$Cao（y＝土症権＋18 is A0 and $y=\sqrt{4 \mathrm{e}^{2}-2 \mathrm{e}^{2}+18}$ is A0）but apply isw if necessary．	A1
		（7）
		［7 marks］

Question Number	Scheme		Marks
7(a)	$\begin{aligned} & y=3 x(2 x-5)^{4} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=3(2 x-5)^{4}+24 x(2 x-5)^{3} \\ & \text { M1: } \frac{\mathrm{d} y}{\mathrm{~d} x}=P(2 x-5)^{4}+Q x(2 x-5)^{3}, \quad P, Q>0 \end{aligned}$ If the product rule is quoted, it must be correct to score M1 A1: Correct differentiation (allow in any correct form)		M1 A1
	$\Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=3(2 x-5)^{3}\{2 x-5+8 x\}$	Takes a common factor of $(2 x-5)^{3}$ out of both terms. The factorisation must be correct for their expression and the powers of $(2 x-5)$ must be different.	M1
	$=15(2 x-5)^{3}(2 x-1)$	Correct expression	A1
			(4)
(b)	$15(2 x-5)^{3}(2 x-1)=0 \Rightarrow x=\frac{1}{2}, \frac{5}{2}$ Obtains both correct critical values - may be implied by e.g. $x<\frac{1}{2} x<\frac{5}{2}$ Also allow this mark for one correct 'end' e.g. $x<\frac{5}{2}$ or $x \leqslant \frac{5}{2}$ or $x>\frac{1}{2}$ or $x \geqslant \frac{1}{2}$		M1
	Examples:$\frac{1}{2}<x<\frac{5}{2}$ or $\frac{1}{2} \leqslant x \leqslant \frac{5}{2}$$\frac{1}{2}<x \leqslant \frac{5}{2}$ or $\frac{1}{2} \leqslant x<\frac{5}{2}$$\frac{1}{2}<x, x<\frac{5}{2}$ or $x \geqslant \frac{1}{2}, x<\frac{5}{2}$$\left(\frac{1}{2}, \frac{5}{2}\right)$ or $\left[\frac{1}{2}, \frac{5}{2}\right]$$\left[\frac{1}{2}, \frac{5}{2}\right)$ or $\left(\frac{1}{2}, \frac{5}{2}\right]$ Acceptable region as shown		A1
			(2)
			[6 marks]

Question Number	Scheme		Marks
$\begin{gathered} 8 \\ \text { Way } 1 \end{gathered}$	$\begin{gathered} \int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int 3 \sin 2 t \times 4 \cos t(\mathrm{~d} t) \\ \text { Attempts } \int y \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t \text { and obtains } k \int \sin 2 t \cos t(\mathrm{~d} t) \end{gathered}$		M1
	$=\int 3 \times 2 \sin t \cos t \times 4 \cos t(\mathrm{~d} t)$ Uses the correct identity for $\sin 2 t$ (may be implied) to obtain $\int A \sin t \cos ^{2} t(\mathrm{~d} t)$		M1
	$\int 24 \sin t \cos ^{2} t(\mathrm{~d} t)$	Correct integral	A1
	$\int 24 \sin t \cos ^{2} t(\mathrm{~d} t)=k \cos ^{3} t(+c)$ Correct form for the integration. Note that an equivalent form may be reached by substitution e.g. $u=\sin t$ gives $\int 24 \sin t \cos ^{2} t \mathrm{~d} t=24 \int \frac{u\left(1-u^{2}\right)}{\sqrt{1-u^{2}}} \mathrm{~d} u=24 \int u\left(1-u^{2}\right)^{\frac{1}{2}} \mathrm{~d} u=-8\left(1-u^{2}\right)^{\frac{3}{2}}(+c)$ So in this case the mark can be awarded for obtaining $k\left(1-u^{2}\right)^{\frac{3}{2}}(+c)$ $\int 24 \sin t \cos ^{2} t \mathrm{~d} t=-24 \int \frac{\text { Or e.g. } u=\cos t \text { gives }}{u^{2} \sqrt{1-u^{2}}} \sqrt{\sqrt{1-u^{2}}} \mathrm{~d} u=-24 \int u^{2} \mathrm{~d} u=-8 u^{3}(+c)$ So in this case the mark can be awarded for obtaining $k u^{3}(+c)$		M1
	$=-8 \cos ^{3} t$ Correct integration. Allow equivalent expressions e.g. $-8\left(1-u^{2}\right)^{\frac{3}{2}},-8 u^{3}$ as above.		A1
	$\begin{gathered} {\left[-8 \cos ^{3} t\right]_{0}^{\frac{\pi}{6}}=-8\left(\cos ^{3} \frac{\pi}{6}-8 \cos ^{3} 0\right)} \\ \text { or e.g. } \\ {\left[-8\left(1-u^{2}\right)^{\frac{3}{2}}\right]_{0}^{\frac{1}{2}}=-8\left(\left(1-\frac{1}{2}\right)^{\frac{3}{2}}-(1-0)^{\frac{3}{2}}\right)} \\ \\ \text { or e.g. } \\ {\left[-8 u^{3}\right]_{1}^{\frac{\sqrt{3}}{2}}=-8\left(\left(\frac{\sqrt{3}}{2}\right)^{3}-(1)^{3}\right)} \end{gathered}$	Correct use of limits for their integrated function. Must see use of both limits. Allow use of 30° for $\frac{\pi}{6}$. Dependent on the previous method mark.	dM1
	$8-3 \sqrt{3}$	Allow 8- $\sqrt{27}$ Depends on not having lost any of the previous marks.	A1
			(7)

Question Number	Scheme		Marks
10(a)	$3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 x y-2=0$	$y^{3} \rightarrow A y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$	M1
		$4 x^{2} y \rightarrow p x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+q x y$	M1
		$3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+4 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}+8 x y-2=0$ The " $=0$ " may be implied	A1
	$\left(3 y^{2}+4 x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=2-8 x y \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\ldots$	Collects terms in $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (must be two and from the correct terms) and makes $\frac{\mathrm{d} y}{\mathrm{~d} x}$ the subject of the formula	M1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2-8 x y}{3 y^{2}+4 x^{2}}$	Correct expression or correct equivalent	A1
			(5)

$$
\text { Ignore any spurious " } \frac{\mathrm{d} y}{\mathrm{~d} x}=\text { " for the first } 3 \text { marks }
$$

Allow full recovery in (b) if they have an incorrect denominator in (a)

(b)	$2-8 x y=0 \Rightarrow y=\frac{1}{4 x}$ Sets the numerator of their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and or proceeds to $y=\mathrm{f}(x)$ or $x=\mathrm{f}(y)$	M1
	Note that starting with $2-8 x y=4 x^{2}+3 y^{2}$ generally will score no marks in (b) Note that working with $4 x^{2}+3 y^{2}=0$ generally will score no marks in (b) and can be ignored if seen alongside work dealing with $2-8 x y=0$ unless it yields extra spurious values - in which case the final mark can be withheld	
	$x=\frac{1}{4 y} \Rightarrow y^{3}+4\left(\frac{1}{4 y}\right)^{2} y-2\left(\frac{1}{4 y}\right)=0$ or $y=\frac{1}{4 x} \Rightarrow\left(\frac{1}{4 x}\right)^{3}+4 x^{2}\left(\frac{1}{4 x}\right)-2 x=0$ Substitutes their x in terms of y or their y in terms of x into the equation for C Dependent on the previous mark	dM1
	$4 y^{4}=1$ or $64 x^{4}=1$ Correct simplified equation (allow equivalent forms e.g. $\left.y^{4}=\frac{1}{4}, x^{-4}=64\right)$	A1
	$y=\frac{1}{\sqrt[4]{4}} \Rightarrow x=\ldots \quad \text { or } \quad x=\frac{1}{\sqrt[4]{64}} \Rightarrow y=\ldots$ Substitutes at least one of their values of x or y to find a value for the other variable or Starts again and repeats the above process for the other variable leading to non-zero real values Dependent on both previous method marks	ddM1
	$x= \pm \frac{\sqrt{2}}{4}, y= \pm \frac{\sqrt{2}}{2}$ The points do not have to be explicitly given as coordinates so just look for values but if any extra points/coordinates are given the final mark should be withheld	
	Two correct values for \boldsymbol{x} or \boldsymbol{y} or a correct pair (likely to be $x=\frac{\sqrt{2}}{4}, y=\frac{\sqrt{2}}{2}$) For x allow e.g. $: \pm \frac{1}{\sqrt[4]{64}}, \pm \frac{1}{2 \sqrt{2}}, \pm \frac{\sqrt{2}}{4}, \pm 64^{-\frac{1}{4}}$ awrt ± 0.354 For y allow e.g. : $\pm \frac{1}{\sqrt[4]{4}}, \pm \sqrt{\frac{1}{2}}, \pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{2}}{2}, \pm 4^{-\frac{1}{4}}$ awrt ± 0.707	A1
	All 4 values correct and exact and simplified For x allow e.g. : $\pm \frac{1}{2 \sqrt{2}}, \pm \frac{\sqrt{2}}{4} \quad$ For y allow e.g. : $\pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{2}}{2}, \pm \sqrt{\frac{1}{2}}$ Pairing is required but may be implied by e.g. $x= \pm \frac{1}{2 \sqrt{2}}, y= \pm \frac{1}{\sqrt{2}}$. If after seeing correct values, the pairings are incorrect the final mark should be withheld.	A1
		(6)
		[11]

Note that it is possible to score M1dM1A1ddM0A1A0 if 2 values of one of \boldsymbol{x} or \boldsymbol{y} are found

Question Number	Scheme	Marks
11(a) Way 1	$\equiv \frac{\cos 3 \theta \cos \theta+\sin 3 \theta \sin \theta}{2 \sin \theta \cos \theta} \quad$For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $\mathrm{f}(\theta)+\mathrm{g}(\theta)$ in the numerator with at least one of $\mathrm{f}(\theta)$ or $\mathrm{g}(\theta)$ correct for their denominator	M1
	$\begin{array}{c\|l} \equiv \frac{\cos (3 \theta-\theta)}{\ldots} \text { or } \frac{\cos 2 \theta}{\ldots} & \begin{array}{l} \text { For attempting to use a compound } \\ \text { ongle formula on the numerator or for } \\ \text { attempting to } k \sin \theta \cos \theta=A \sin 2 \theta \text { on } \\ \text { the denominator } \end{array} \\ \equiv \frac{\ldots}{\sin 2 \theta} & \end{array}$	M1
	$\equiv \frac{\cos (3 \theta-\theta)}{\sin 2 \theta} \text { or } \frac{\cos 2 \theta}{\sin 2 \theta}$ For attempting to use a compound angle formula on the numerator and attempting to use $k \sin \theta \cos \theta=A \sin 2 \theta$ on the denominator to reach $\frac{A \cos 2 \theta}{B \sin 2 \theta}$	M1
	$\equiv \cot 2 \theta * \quad \|$Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*
		(4)
(a) Way 2	$\equiv \frac{\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta}{2 \sin \theta}+\frac{\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta}{2 \cos \theta}$ For attempting to use a compound angle formula on the numerators with at least one correct	M1
	$\equiv \cos 2 \theta\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{2 \sin \theta \cos \theta}\right) \quad$For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$, factoring out $\cos 2 \theta$ and $\operatorname{simplifying}$ the numerator.	M1
	$\begin{gathered} \equiv \cos 2 \theta \times \frac{1}{\sin 2 \theta} \\ \text { For attempting to use } \\ k \sin \theta \cos \theta=A \sin 2 \theta \text { on the denominator and } \sin ^{2} \theta+\cos ^{2} \theta=1 \text { on the numerator } \\ \text { to reach } \frac{A \cos 2 \theta}{B \sin 2 \theta} \end{gathered}$	M1
	Note that $\cos 2 \theta \times \frac{1}{\sin 2 \theta}$ can also be reached from $\cos 2 \theta\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{2 \sin \theta \cos \theta}\right)$: $\begin{gathered} \cos 2 \theta\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{2 \sin \theta \cos \theta}\right)=\frac{1}{2} \cos 2 \theta(\tan \theta+\cot \theta)=\frac{1}{2} \cos 2 \theta\left(\frac{1+\tan ^{2} \theta}{\tan \theta}\right) \\ =\frac{1}{2} \cos 2 \theta\left(\frac{\sec ^{2} \theta}{\tan \theta}\right)=\frac{\cos 2 \theta}{2 \sin \theta \cos \theta}=\frac{\cos 2 \theta}{\sin 2 \theta} \end{gathered}$ Award the third method mark for using correct trigonometry to reach $\frac{A \cos 2 \theta}{B \sin 2 \theta}$	
	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*

(a) Way 3	$\equiv \frac{\cos 3 \theta \cos \theta+\sin 3 \theta \sin \theta}{2 \sin \theta \cos \theta}$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $\mathrm{f}(\theta)+\mathrm{g}(\theta)$ in the numerator with at least one of $f(\theta)$ or $g(\theta)$ correct for their denominator	M1
	$\begin{array}{r} \equiv \frac{\frac{1}{2} \cos 2 \theta-\frac{1}{2}}{\text { Applies the }} \\ k(\cos 2 \theta+\cos 4 \theta) \text { for } \cos 3 \theta \end{array}$	$\begin{aligned} & +\frac{1}{2} \cos 4 \theta+\frac{1}{2} \cos 2 \theta \\ & \theta \cos \theta \\ & \text { formulae to obtain } \\ & \text { nd } k(\cos 4 \theta-\cos 2 \theta) \text { for } \sin 3 \theta \sin \theta \end{aligned}$	M1
	For attempting to use $k \sin \theta \cos \theta=$ numerato	$\frac{\sin }{\mathrm{n} 2 \theta}$ θ on the denominator and simplifies the $\operatorname{ach} \frac{A \cos 2 \theta}{B \sin 2 \theta}$	M1
	$\equiv \cot 2 \theta$ *	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*
(a) Way 4	$\equiv \frac{\cos 3 \theta \cos \theta+\sin 3 \theta \sin \theta}{2 \sin \theta \cos \theta}$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $\mathrm{f}(\theta)+\mathrm{g}(\theta)$ in the numerator with at least one of $\mathrm{f}(\theta)$ or $\mathrm{g}(\theta)$ correct for their denominator	M1
	$\equiv \frac{\cos \theta\left(4 \cos ^{3} \theta-3 \cos \theta\right)+\sin \theta\left(3 \sin \theta-4 \sin ^{3} \theta\right)}{2 \sin \theta \cos \theta}$ Applies the formulae for $\cos 3 \theta$ and $\sin 3 \theta$ to the numerator of their fraction. If these formulae are quoted they must be correct otherwise a complete method must be seen to establish both of them		M1
	$\equiv \frac{4\left(\cos ^{4} \theta-\sin ^{4} \theta\right)+3\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}{\sin 2 \theta}=\frac{4 \cos 2 \theta-3 \cos 2 \theta}{\sin 2 \theta}$ Collects terms and applies $\cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$ in the numerator and $k \sin \theta \cos \theta=A \sin 2 \theta \text { in the denominator to reach } \frac{A \cos 2 \theta}{B \sin 2 \theta}$		M1
	$\equiv \cot 2 \theta$ *	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*

(b)	$\begin{gathered} \cot 2 x=5 \cos 2 x \Rightarrow \sin 2 x=\frac{1}{5} \\ (\cos 2 x=0) \end{gathered}$	Uses $\cot 2 x=\frac{\cos 2 x}{\sin 2 x}$ and proceeds to $\sin 2 x=k \quad(-1<k<1)$	M1
	$\Rightarrow x=\frac{1}{2} \arcsin \frac{1}{5}$	Correct order of operations to find one value of x from $\sin 2 x=k$ Dependent on the previous mark	dM1
	$\Rightarrow x=0.101,$ A1: Any 2 values which round to tho $1.47 \text { for } 1.4^{\prime}$ A1: All values which round to those s for 1.470 Ignore extra answers outside the r answe Answers in degrees lose both mar the answers	$70, \frac{\pi}{4}$ (or 0.785) hown. Allow $\frac{\pi}{4}$ or awrt 0.785 and allow but not awrt 1.47 n. Allow $\frac{\pi}{4}$ or awrt 0.785 and allow 1.47 not awrt 1.47 e but withhold the final mark for extra the range. ut ignore degrees symbols if present if therwise correct	A1A1
			(4)
			[8 marks]

Note that it is possible to answer Q12 using integration by parts (either way round) BUT it is very demanding and candidates are unlikely to get very far and will gain no marks.
If they reach $A x+B \ln x+C \ln (x-4), A, B, C \neq 0$ send to review.

Question Number	Scheme	Marks
12	$\frac{A}{x}+\frac{B}{x-4}=-\frac{2}{x}+\frac{14}{x-4}$ For an attempt to find partial fractions of the form $\frac{A}{x}+\frac{B}{x-4}$ where A and B are numeric and non-zero	M1
	Correct fractions $-\frac{2}{x}+\frac{14}{x-4}$	A1
	$\frac{3 x^{2}+8}{x^{2}-4 x}=3+\mathrm{f}(x)$ Where $\mathrm{f}(x)=\frac{A}{x}+\frac{B}{x-4}$ with numeric A and B or the letters " A " and " B " or Where $\mathrm{f}(x)=\frac{C x+D}{x^{2}-4 x}$ with numeric C and D with C, D not both zero	B1
	This mark is for integrating at least 2 terms of the form $\frac{\alpha}{x \pm k}$ to obtain $\beta \ln (x \pm k)$ where k may be zero Allow e.g. $\ln (x \pm k), \ln (k \pm x), \ln \|x \pm k\|$, also allow $\ln x \pm k$ for this mark	M1
	For $\int 3-\frac{2}{x}+\frac{14}{x-4} \mathrm{~d} x \rightarrow 3 x-2 \ln \|x\|+14 \ln \|x-4\|$ following through on their coefficients requires modulus signs and/or brackets around the $x-4$ unless they are implied by later work. E.g. allow $3 x-2 \ln x+14 \ln (x-4)$	A1ft
	$=9-2 \ln 3-3-14 \ln 3=\ldots$ Evidence of the use of both limits 3 and 1 and subtracts the right way round and reaches an expression of the form $P+Q \ln R$, where P, Q and R are rational and non-zero and $R>0$ Dependent on the previous method mark	dM1
	$=6-16 \ln 3$ Accept equivalents e.g. $\begin{gathered} 6-8 \ln 9,6+16 \ln \left(\frac{1}{3}\right), 6-\ln 3^{16}, 6+\ln \frac{1}{43046721}, 6-\ln 43046721 \\ 6+\ln \frac{1}{9 \times 3^{14}}, 6-\ln \left(9 \times 3^{14}\right) \text { etc. } \end{gathered}$	A1
		(7)
		[7 marks]

Special Case:

Some students know to use PF but fail to see it is an improper fraction and the solution will look similar to this:

$$
\begin{gathered}
\frac{3 x^{2}+8}{x^{2}-4 x}=\frac{14}{x-4}-\frac{2}{x} \\
\int_{1}^{3} \frac{3 x^{2}+8}{x^{2}-4 x} \mathrm{~d} x=\int_{1}^{3} \frac{14}{x-4}-\frac{2}{x} \mathrm{~d} x=[14 \ln |x-4|-2 \ln |x|]_{(x=1)}^{(x=3)} \\
=14 \ln 1-2 \ln 3-(14 \ln 3-2 \ln 1)=-16 \ln 3
\end{gathered}
$$

These students can potentially score M1 A1 B0 M1 A0 dM0 A0 for 3 out of 7

If $2 x-7 y-48=0$ is obtained fortuitously in (b) all the marks are available in (c) apart from the A1cso

(d)(i)$\text { Way } 1$	Quotient: $\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{\left(2+3 \mathrm{e}^{-0.2 t}\right) \times 0-1800 \times-0.6 \times \mathrm{e}^{-0.2 t}}{\left(2+3 \mathrm{e}^{-0.2 t}\right)^{2}}$ Chain: $\frac{\mathrm{d} N}{\mathrm{~d} t}=-1800 \times-0.6 \times \mathrm{e}^{-0.2 t}\left(2+3 \mathrm{e}^{-0.2 t}\right)^{-2}$ M1: For obtaining a derivative of the form $\frac{A \mathrm{e}^{-0.2 t}}{\left(2+3 \mathrm{e}^{-0.2 t}\right)^{2}}$ A1: Correct derivative in any form which may be unsimplified as above. Often seen as $\frac{1080 \mathrm{e}^{-0.2 t}}{\left(2+3 \mathrm{e}^{-0.2 t}\right)^{2}}$	M1 A1
	$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{1800 \times 0.6 \times \frac{1}{3}\left(\frac{1800}{N}-2\right)}{\left(\frac{1800}{N}\right)^{2}}$ A full attempt to get $\frac{\mathrm{d} N}{\mathrm{~d} t}$ in terms of N. Both $\mathrm{e}^{-0.2 t}$ and $\left(2+3 \mathrm{e}^{-0.2 t}\right)^{2}$ must be replaced by a function of N. Dependent on the first method mark	dM1
	$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500} \quad \therefore A=4500 \quad \frac{\mathrm{~d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500}$	A1
$(\mathbf{d})(\mathbf{i})$$\text { Way } 2$	$\begin{gathered} N=\frac{1800}{2+3 \mathrm{e}^{-0.2 t}} \Rightarrow N\left(2+3 \mathrm{e}^{-0.2 t}\right)=1800 \Rightarrow\left(2+3 \mathrm{e}^{-0.2 t}\right) \frac{\mathrm{d} N}{\mathrm{~d} t}+N\left(-0.6 \mathrm{e}^{-0.2 t}\right)=0 \\ \text { M1: }\left(2+3 \mathrm{e}^{-0.2 t}\right) \frac{\mathrm{d} N}{\mathrm{~d} t}+A \mathrm{e}^{-0.2 t}=0 \end{gathered}$ A1: Correct equation or $\begin{gathered} N=\frac{1800}{2+3 \mathrm{e}^{-0.2 t}} \Rightarrow 2 N+3 N \mathrm{e}^{-0.2 t}=1800 \Rightarrow 2 \frac{\mathrm{~d} N}{\mathrm{~d} t}+3 \mathrm{e}^{-0.2 t} \frac{\mathrm{~d} N}{\mathrm{~d} t}+N\left(-0.6 \mathrm{e}^{-0.2 t}\right)=0 \\ \text { M1: } A \frac{\mathrm{~d} N}{\mathrm{~d} t}+B \mathrm{e}^{-0.2 t} \frac{\mathrm{~d} N}{\mathrm{~d} t}+C N \mathrm{e}^{-0.2 t}=0 \end{gathered}$ A1: Correct equation	M1A1
	$\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{0.6 N \mathrm{e}^{-0.2 t}}{2+3 \mathrm{e}^{-0.2 t}}=\frac{0.6 N\left(\frac{1800}{3 N}-\frac{2}{3}\right)}{\frac{1800}{N}}$ Makes $\frac{\mathrm{d} N}{\mathrm{~d} t}$ the subject and a full attempt to get $\frac{\mathrm{d} N}{\mathrm{~d} t}$ in terms of N. Both $\mathrm{e}^{-0.2 t}$ and $2+3 \mathrm{e}^{-0.2 t}$ must be replaced by a function of N. Dependent on the first method mark	dM1
	$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500} \quad \therefore A=4500 \quad \frac{\mathrm{~d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500}$	A1

(d)(i) Way 3	$\begin{aligned} & N=\frac{1800}{2+3 \mathrm{e}^{-0.2 t}} \Rightarrow 2 N+3 N \mathrm{e}^{-0.2 t}=1800 \Rightarrow \mathrm{e}^{-0.2 t}=\frac{1800-2 N}{3 N} \\ \Rightarrow & -0.2 t=\ln \left(\frac{1800-2 N}{3 N}\right) \Rightarrow \frac{\mathrm{d} t}{\mathrm{~d} N}=-5 \times\left(\frac{3 N}{1800-2 N}\right) \times-600 N^{-2} \end{aligned}$ M1: For an attempt to make t or $-0.2 t$ the subject and then applies the chain rule to obtain $\frac{\mathrm{d} t}{\mathrm{~d} N}$ A1: Correct derivative in any form		M1 A1
	$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{(1800-2 N) N^{2}}{9000}$ A full attempt to get $\frac{\mathrm{d} N}{\mathrm{~d} t}$ in terms of N. Dependent on the first method mark		dM1
	$\Rightarrow \frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500} \quad \therefore A=4500$	$\frac{\mathrm{d} N}{\mathrm{~d} t}=\frac{N(900-N)}{4500}$	A1
(ii)	$N=450$	Cao	B1
			(5)
			[11 marks]

Question Number	Scheme		Marks
15(a)	$\frac{8000}{56+9+0}=\frac{8000}{65}=\frac{1600}{13}$	Allow any equivalent fraction or awrt 123m	B1
			(1)
(b)	$9 \cos t+40 \sin t=R \cos (t-\alpha)$		
	$R=\sqrt{9^{2}+40^{2}}=41$	41 only	B1
	$\begin{gathered} \alpha=\arctan \left(\pm \frac{40}{9}\right)=\ldots \\ \text { or } \quad \alpha=\arctan \left(\pm \frac{9}{40}\right)=\ldots \\ \alpha=\arcsin \left(\pm \frac{40}{" 41^{\prime \prime}}\right)=\ldots \\ \text { or } \quad \alpha=\arccos \left(\pm \frac{9}{441^{\prime \prime}}\right)=\ldots \end{gathered}$		M1
	$\alpha=77.3$ Awrt 77.3		A1
			(3)
(c)(i)	$\frac{8000}{56+R^{\prime}}=\ldots \mathrm{m}$	$\text { Attempts } \frac{8000}{56+R^{\prime}}$	M1
	$=\frac{8000}{97}$	$\frac{8000}{97}$ or awrt 82.5	A1
(ii)	$t=77.3$	Awrt 77.3 or follow through their α (ignore what they do in (c)(i))	B1ft
			(3)
(d)	$150=\frac{8000}{56+41 \cos (t-77.3)} \Rightarrow \cos (t-77.3)=-0.065$ Uses their part (b) with $H=150$ and reaches $\cos (t \pm 77.3)=k$ with $-1<k<0$		M1
	$\cos \left(t \pm\right.$ "77.3") $=-\frac{8}{123}$ or awrt -0.065 (Follow through their 77.3)		A1ft
	$\cos (t \pm 77.3)=-\frac{8}{123} \Rightarrow t \pm 77.3=\arccos \left(-\frac{8}{123}\right) \Rightarrow t=\ldots$ Takes arccos and then \pm " 77.3 " and uses the obtuse angle leading to a value for t Dependent on the first M so requires $-1<k<0$		dM1
	$(t=) 171$	Awrt 171 and no other values	A1
			(4)
			[11 marks]

Note that the use of radians for an otherwise correct solution would normally lose the A mark in (b) and the final A mark in (d). (Values are (a) 1.349 and (d) 2.98)

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

