

Mark Scheme (Results)

January 2020

Pearson Edexcel International Advanced Level In Core Mathematics C34 (WMA02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020 Publications Code WMA02_01_2001_MS* All the material in this publication is copyright © Pearson Education Ltd 2020

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = \dots$

2. <u>Formula</u>

Attempt to use the <u>correct</u> formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an <u>exact</u> answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these <u>may</u> not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required. Most candidates do show working, but there are occasional awkward cases and if the mark scheme does <u>not</u> cover this, please contact your team leader for advice.

Question Number	Sc	heme	Marks
1(a)	$(f'(x) =) 8x^3 + 2x - 3 = 0$	Attempts to differentiate (reduction of power by 1 seen at least once including $8 \rightarrow 0$) and sets their $f'(x) = 0$ which may be implied by subsequent work.	M1
	$x^{3} = \frac{3-2x}{8}$ or $8x^{3} = 3-2x$	Makes x^3 or kx^3 the subject of their $f'(x) = 0$ where the x^3 or kx^3 has come from differentiating $2x^4$. Dependent on the previous M.	d M1
	$x = \sqrt[3]{\frac{3-2x}{8}} * \text{ or } x = \sqrt[3]{\frac{-2x+3}{8}} *$	Obtains the printed answer with no errors or omissions. Allow use of α rather than x for the M marks but the final answer must be in terms of x. Be generous if the cube root does not fully encompass the expression.	A1*
		B <i>t</i> 1 A 1 C A	(3)
	Alternative to	r d M1 A1 in (a):	
	$x = \sqrt[3]{\frac{3-2x}{8}} \Longrightarrow x^3 = \frac{3}{2}$	$\frac{3-2x}{8} \Longrightarrow 8x^3 + 2x - 3 = 0$	d M1
	Cubes both sides of the given equa	the second seco	
	Which is $f'(x) = 0$ therefore proved	Obtains $8x^2 + 2x - 3 = 0$ both times (including the "= 0") and makes a (minimal) conclusion.	A1
(b)	$x_2 = \sqrt[3]{\frac{3-2 \times 0.6}{8}} = \dots$	Substitutes $x_1 = 0.6$ into the given formula to find a value for x_2 . This may be implied by their expression or awrt 0.61	M1
	$\Rightarrow x_2 = \text{awrt } 0.608$ Both values correct which round to t appear and ignore how they are refer	32, $x_3 = awrt 0.6064$ the above. Mark in order that the values renced and ignore any further iterations.	A1
	Note that some candidates take the and this scores M0 in (b) if there i correct formula. (Values to loc	square root rather than the cube root s no evidence that they have used the ok for are 0.4743 and 0.5063)	
			(2)
(c)	f'(0.6065) = -0.0022 f'(0.6075) = 0.0086	Chooses a suitable interval for x, which is within 0.607 ± 0.0005 and attempts to evaluate their $f'(x)$ for both values (must be a 'changed' $f(x)$) although they might refer to it as $f(x)$.	M1
	Note that it is possible to use	$g(x) = x - \sqrt[3]{\frac{3-2x}{8}}$ which gives	
	g(0.6065) = -0.0002524 and $g(0.605)$ which function is being used then scorgiving values of 6.8189580 ar	6075 = 0.00097401 but if it is not clear e M0. Note that many candidates use f (x) ad 6.8189612 and also scores M0	
	Sign change (negative Both values correct awrt (or truncate f'(0.6065).f'(0.6075) < 0 or f'(0.6065) < e.g. therefore root. Allow tick, QE	e, positive) therefore root. ed) 1 sf, sign change (or e.g. $< 0, > 0$ or < 0 < f'(0.6075)) and a minimal conclusion CD, hash, square box, smiley face etc.	A1
	Attempts at successive	e iteration score M0 in (c)	
			(2)
			/ шагку

Question Number	Scheme		
2(a)	Takes out a common factor of $\left(\frac{1}{2}\right)$ or $\frac{1}{2}$		
	$(1)^{\frac{1}{2}}$ $(1)^{\frac{1}{2}}$ $(1)^{\frac{1}{2}}$		
	$\left(\frac{1}{4} - 3x\right)^2 = \frac{1}{2} \left(1 \pm\right)^2$ or equivalent e.g. $\frac{1}{\sqrt{4}}, \left(\frac{1}{4}\right)^2, 2^{-1}, 4^{-2}$ to	B1	
	give $\frac{1}{2}(1 \pm)^{\frac{1}{2}}$ oe		
-	$(1-12x)^{\frac{1}{2}} = 1 - (\frac{1}{2})12x + \frac{(\frac{1}{2})\times(\frac{1}{2}-1)}{2!} \times (-12x)^{2} + \frac{(\frac{1}{2})\times(\frac{1}{2}-1)\times(\frac{1}{2}-2)}{3!} \times (-12x)^{3}$		
	For the binomial expansion of $(1+ax)^{\frac{1}{2}}$ where $a \neq -3$		
	Award for a correct structure for term three and/or term 4 (allow \pm '12'x) Condone the omission of brackets.	M1	
	E.g. allow $\frac{\frac{1}{2} \times \frac{1}{2} - 1 \times \frac{1}{2} - 2}{3!} \times "12" x^3$ for term 4		
	$(1-12x)^{\frac{1}{2}} = 1 - \left(\frac{1}{2}\right)12x + \frac{\left(\frac{1}{2}\right) \times \left(\frac{1}{2} - 1\right)}{2!} \times \left(-12x\right)^{2} + \frac{\left(\frac{1}{2}\right) \times \left(\frac{1}{2} - 1\right) \times \left(\frac{1}{2} - 2\right)}{3!} \times \left(-12x\right)^{3}$		
	or $(1-12x)^{\frac{1}{2}} = 1-6x-18x^2-108x^3$	A1	
	This mark is for a correct unsimplified or simplified expansion of $(1-12r)^{\frac{1}{2}}$		
	If unsimplified, the brackets must be present where necessary unless they are implied by subsequent work. Allow $(12x)^2$ for term 3.		
-	$-\frac{1}{2} - 3r - 9r^{2} - 54r^{3} + $ Any 2 correct simplified terms	A1	
	$\frac{-2}{2} - 5x - 5x - 5x + \dots$ All correct and simplified	A1	
	<u>Special case:</u> If all the working is correct but the brackets are not removed e g		
	$\frac{1}{2}\left(1-6r-18r^2-108r^3-1\right)$		
	$\frac{1}{2} \left(\frac{1-6x-16x}{2} - \frac{106x}{2} - \frac{10}{2} \right)$ Score B1M1A1A1A0		
(a) Way 2 (Direct	$\left(\frac{1}{4}-3x\right)^{\frac{1}{2}} = \left(\frac{1}{4}\right)^{\frac{1}{2}} + \frac{1}{2}\left(\frac{1}{4}\right)^{-\frac{1}{2}}(-3x) + \frac{\left(\frac{1}{2}\right)\times\left(-\frac{1}{2}\right)}{2!}\left(\frac{1}{4}\right)^{-\frac{3}{2}}(-3x)^{2} + \frac{\left(\frac{1}{2}\right)\times\left(-\frac{1}{2}\right)\times\left(-\frac{3}{2}\right)}{3!}\left(\frac{1}{4}\right)^{-\frac{5}{2}}(-3x)^{3} + \dots$	B1	
Expansion)	B1: For first term $\left(\frac{1}{4}\right)^{\frac{1}{2}}$ or as defined above	M1	
	M1: For a correct structure for term three and/or term 4. (allow $\pm 3x$) A1: Correct and unsimplified binomial expansion. The brackets must be present where necessary unless they are implied by subsequent work.	A1	
	$-\frac{1}{2} x 0 x^2 54 x^3$ Any 2 correct simplified terms	A1	
	$= \frac{1}{2} - 3x - 9x - 54x + \dots$ All correct and simplified	A1	
(b)	$\sqrt{22} \approx 10 \left(\frac{1}{2} - \frac{3}{100} - \frac{9}{10000} - \frac{54}{1000000} \right)$		
	Substitutes $x = \frac{1}{1}$ into their expansion and multiplies by 10 to obtain a value.	M1	
	You may need to check if no working is shown.		
	$(\sqrt{22} =)4.6905$ Correct value only	Al	
		(2)	
		[7 marks]	

Question Number	Scheme				Marks			
3(a)								
	x	4	4.5		5	5.5	6	
		10	10	1	0	10	10	
	У	$\overline{1+\sqrt{4}}$	$1 + \sqrt{4.5}$	1+	$\sqrt{5}$	$1 + \sqrt{5.5}$	$\overline{1+\sqrt{6}}$	
	12	10	$-20+30\sqrt{2}$	-5+	$5\sqrt{5}$	$-20 + 10\sqrt{22}$	$-2+2\sqrt{6}$	M1
	y	3	7		2	9	2+240	
	У	3.33333	3.20377	3.090)16	2.98935	2.89897	
	N	Attempts at Must be accurated	least 3 values for the to 2dp for decin	y as shov mals unl	wn. Eith ess impl	er in exact or decin ied by the correct a	nal form. nswer later	
		h	e = 0.5		Correct their x v	strip width. May be alues.	e implied by	B1
		Area ≈	$\frac{0.5}{2}$ {3.333+2.8	99+2×	(3.204	+3.090+2.989)}	=	
		1	Fully correct appli	cation o	of the tra	pezium rule e.g.		
			$\frac{h}{2}$ {Corr	ect y va	luestrue	cture}		M1
	Allow a correct y value structure for their y values but must be for at least 3 x values that include y values at $x = 4$ and $x = 6$							
	E.g. $\approx \frac{1}{2}(1)\{3.333 + 2.899 + 2 \times (3.090)\} = \dots$ scores M1B0M1A0							
		=	= 6.20		Allow a not awr	wrt 6.20 but also al t 6.2	low 6.2 but	Al
				I	not um			(4)
(b)		 In (b) Cor A NI 	the method mus rect or correct ft ttempts to use th 3 integration/calo	t be mae answer e trapez culator ;	de clear s with n zium ru gives (i)	as required by the o working score n le again score no n 18.5925 (ii) 12.1	e question o marks narks 1975	
(i)	~~~~	"6.2	$0" \times 6 =$	~~~~~~	Allow f	or any one of:		Î
			or		•	Answer to (a) \times 6 c	only	
		"6.2	$0" \div 2 =$		•	Answer to (a) $\div 2$ of	only	M1
		"6.2	$0'' \times 3 = \dots$		•	Answer to $(a) \times 3$ (Not necessarily e)	only valuated)	
			18.60		Answer 18.6. Fc answers	to (a) \times 3. If corrector ft be generous and that are clearly (a)	t, allow awrt d allow × 3	A1ft
(ii)		$\int_{4}^{6} \frac{13+3\sqrt{x}}{1+\sqrt{x}} dx$	dx = "6.20"+6 =		Their (a Note tha come fro) value + 6. at it is acceptable for om $\int_{4}^{6} 3 dx$	r the "6" to	M1
			12.20		Answer 12.2. Fc answers	to $(a) + 6$. If corrector ft be generous and that are clearly (a)	t, allow awrt 1 allow + 6	A1ft
								(4)
								[8 marks]

Question Number	Sch	eme	Marks
4(a)	y y	A V-shape anywhere. (Ignore gradient as long as it is a V shape) Do not be overly concerned by lack of symmetry and ignore any extra dashed or dotted lines.	B1
	8 $\left(\frac{7}{2},1\right)$	A V-shape with intercept at (0, 8) or 8 marked on the y-axis or (8, 0) marked in the correct place on the y-axis. Their graph must cross (not just touch) the y-axis to score this mark Allow away from the sketch but must be (0, 8). The sketch has precedence.	B1
	0	Min point at $\left(\frac{7}{2}, 1\right)$ which must correspond with the sketch i.e. in quadrant 1. Ignore any other minimum points.	B1
			(3)
(b) Way 1	$14 - x = 2x - 7 + 1 \Longrightarrow x = \dots$ or $14 - x = -2x + 7 + 1 \Longrightarrow x = \dots$	Attempts to solve one of these equations or equivalent	M1
	Either $x = \frac{20}{3}$ or $x = -6$	One correct value	A1
	$14 - x = 2x - 7 + 1 \Longrightarrow x = \dots$ and $14 - x = -2x + 7 + 1 \Longrightarrow x = \dots$	Attempts to solve both of these equations or equivalents. Dependent on the previous M.	d M1
	$x = \frac{20}{3}$ and $x = -6$	Both correct values and no other <i>x</i> values. Ignore any attempts at <i>y</i> values.	A1
			(4)
(b) Way 2	$14 - x = 2x - 7 + 1 \Longrightarrow 2x - 7 = 13 - x$ $\implies (2x - 7)^2 = (13 - x)^2$	Isolates $ 2x-7 $ and attempts to square both sides	M1
	$\Rightarrow 3x^2 - 2x - 120 = 0$	Correct quadratic equation	A1
	$\Rightarrow (3x-20)(x+6) = 0$ $x = \dots$	Solves their 3TQ (usual rules). Dependent on the previous M.	d M1
	$x = \frac{20}{3}$ and $x = -6$	Both correct values and no other <i>x</i> values. Ignore any attempts at <i>y</i> values.	A1
(c)	$"1" = \frac{1}{2} \times "\frac{7}{2}" + k \Longrightarrow k = \dots$	Uses $y = \frac{1}{2}x + k$ with their (3.5, 1) where their 3.5 \neq 0 to find 'k'	M1
	$k < -\frac{3}{4}$	Allow equivalent notation e.g. $(-\infty, -0.75)$	A1
			(2)
			[9 marks]

Question Number	Sch	Scheme		
5(a)	$f(x) \leq 27$	Allow $y \leq 27$, range ≤ 27 , $(-\infty, 27]$, f ≤ 27 but not $x \leq 27$	B1	
			(1)	
	Mark (i) and	d (ii) together		
(b)(i)	$9+3x=0 \Longrightarrow x=-3$	$x = -3$. Allow $x = -\frac{9}{3}$	B1	
(ii)	$f(12) = 0 \Longrightarrow B - 144A = 0$ or $f(6) = 27 \Longrightarrow B - 36A = 27$	Uses $x = 12$ and $y = 0$ or $x = 6$ and $y = 27$ in $y = B - Ax^2$ (i.e. uses $x = 6$ in $B - Ax^2 = 9 + 3x$)	M1	
	$f(12) = 0 \Longrightarrow B - 144A = 0$ and $f(6) = 27 \Longrightarrow B - 36A = 27$ $\Longrightarrow A = \dots, B = \dots$	Uses $x = 12$ and $y = 0$ and $x = 6$ and $y = 27$ in $y = B - Ax^2$ (i.e. uses $x = 6$ in $B - Ax^2 = 9 + 3x$) and obtains values for A and B	M1	
	$A = \frac{1}{4}, B = 36$	Correct values	A1	
		•	(4)	
(c)	$ff(0) = f(0) = 36 \frac{9^2}{9^2} = 63$	Attempts $B \pm A \times 9^2$ with their values of A and B	M1	
	$\Pi(0) = I(9) = 30 - \frac{1}{4} = \frac{1}{4}$	15.75 oe (15.8 scores A0 unless 15.75 is seen earlier then isw)	A1	
			(2)	
			[7 marks]	

Question Number	Scheme	Marks
6.	$\int y dy = \int 4x \ln x dx \text{or e.g.} \int \frac{y}{4} dy = \int x \ln x dx$ Separates the variables. Allow without the integral signs but must include the dx and dy unless they are implied by subsequent work.	B1
	$\int kx \ln x dx \to Ax^2 \ln x - \int \frac{Bx^2}{x} dx$ This mark is for applying integrating by parts to the RHS to obtain an expression of this form	M1
	$\int y dy = \frac{y^2}{2} (+c) \text{ or } \int \frac{y}{4} dy = \frac{y^2}{8} (+c) \qquad \text{Integrates the LHS correctly with or without "+ c"}$	B1
	$\int 4x \ln x dx = 2x^2 \ln x - x^2 (+c)$ or $\int x \ln x dx = \frac{x^2}{2} \ln x - \frac{x^2}{4} (+c)$	A1
	Integrates the RHS correctly with or without "+ c" $\frac{4^2}{2} = 2(1)^2 \ln 1 - (1)^2 + c \Rightarrow c =$ Substitutes $x = 1$ and $y = 4$ into an equation formed from some integration in an attempt to find c $\frac{4^2}{8} = \frac{1}{2} \ln 1 - \frac{(1)^2}{4} + c \Rightarrow c =$ Substitutes $x = 1$ and $y = 4$ into an equation formed from some integration in an attempt to find c	M1
	$x = e \Rightarrow \frac{y^2}{2} = 2e^2 \ln e - e^2 + 9 \Rightarrow y^2 = \dots \text{ or } y = \dots$ $x = e \Rightarrow \frac{y^2}{8} = \frac{e^2}{2} \ln e - \frac{e^2}{4} + 2.25 \Rightarrow y^2 = \dots \text{ or } y = \dots$ Dependent upon both M's. Scored for a full method to find y or y ² when x = e	dd M1
	$y = \sqrt{2e^2 + 18}$ Cao $(y = \pm \sqrt{2e^2 + 18} \text{ is A0 and})$ $y = \sqrt{4e^2 - 2e^2 + 18} \text{ is A0}$ but apply isw if necessary.	A1
		(7) [7 marke]
		[/ marks]

Question Number	Sch	eme	Marks
7(a)	$y = 3x(2x-5)^{4} \Rightarrow \frac{dy}{dx} = 3(2x-5)^{4} + 24x(2x-5)^{3}$ M1: $\frac{dy}{dx} = P(2x-5)^{4} + Qx(2x-5)^{3}$, $P, Q > 0$ If the product rule is quoted, it must be correct to score M1 A1: Correct differentiation (allow in any correct form)		M1 A1
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 3(2x-5)^3 \{2x-5+8x\}$	Takes a common factor of $(2x-5)^3$ out of both terms. The factorisation must be correct for their expression and the powers of $(2x - 5)$ must be different.	M1
	$=15(2x-5)^{3}(2x-1)$	Correct expression	A1
			(4)
	$15(2x-5)^{3}(2$	M1	
	Examples: $\frac{1}{2} < x < \frac{5}{2} \text{ or } \frac{1}{2} \leq x \leq \frac{5}{2}$ $\frac{1}{2} < x \leq \frac{5}{2} \text{ or } \frac{1}{2} \leq x < \frac{5}{2}$ $\frac{1}{2} < x, x < \frac{5}{2} \text{ or } x \geq \frac{1}{2}, x < \frac{5}{2}$ $\left(\frac{1}{2}, \frac{5}{2}\right) \text{ or } \left[\frac{1}{2}, \frac{5}{2}\right]$ $\left[\frac{1}{2}, \frac{5}{2}\right] \text{ or } \left(\frac{1}{2}, \frac{5}{2}\right]$	Acceptable region as shown	A1
			(2)
			[6 marks]

Question Number	Sch	heme	Marks
8 Way 1	$\int y \frac{dx}{dt} dt = \int 3\sin 2t \times 4\cos t (dt)$ Attempts $\int y \frac{dx}{dt} dt$ and obtains $k \int \sin 2t \cos t (dt)$		
	$= \int 3 \times 2 \sin t \cos t \times 4 \cos t (dt)$ Uses the correct identity for $\sin 2t$ (may be implied) to obtain $\int A \sin t \cos^2 t (dt)$		
	$\int 24\sin t \cos^2 t (dt) \qquad \text{Correct integral}$		
	$\int 24\sin t \cos^2 t (dt) = k \cos^3 t (+c)$ Correct form for the integration. Note that an equivalent form may be reached by substitution e.g. $u = \sin t$ gives $\int 24\sin t \cos^2 t dt = 24 \int \frac{u(1-u^2)}{\sqrt{1-u^2}} du = 24 \int u (1-u^2)^{\frac{1}{2}} du = -8(1-u^2)^{\frac{3}{2}} (+c)$ So in this case the mark can be awarded for obtaining $k (1-u^2)^{\frac{3}{2}} (+c)$ Or e.g. $u = \cos t$ gives $\int 24\sin t \cos^2 t dt = -24 \int \frac{u^2 \sqrt{1-u^2}}{\sqrt{1-u^2}} du = -24 \int u^2 du = -8u^3 (+c)$ So in this case the mark can be awarded for obtaining $ku^3 (+c)$		
	$= -8\cos^{2} t$ Correct integration. Allow equivalent expressions e.g. $-8(1-u^{2})^{\frac{3}{2}}$, $-8u^{3}$ as above.		A1
	$\begin{bmatrix} -8\cos^3 t \end{bmatrix}_0^{\frac{\pi}{6}} = -8\left(\cos^3 \frac{\pi}{6} - 8\cos^3 0\right)$ or e.g. $\begin{bmatrix} -8\left(1 - u^2\right)^{\frac{3}{2}} \end{bmatrix}_0^{\frac{1}{2}} = -8\left(\left(1 - \frac{1}{2}\right)^{\frac{3}{2}} - (1 - 0)^{\frac{3}{2}}\right)$ or e.g. $\begin{bmatrix} -8u^3 \end{bmatrix}_1^{\frac{\sqrt{3}}{2}} = -8\left(\left(\frac{\sqrt{3}}{2}\right)^3 - (1)^3\right)$	Correct use of limits for their integrated function. Must see use of both limits. Allow use of 30° for $\frac{\pi}{6}$. Dependent on the previous method mark.	d M1
	8-3\sqrt{3}	Allow $\delta = \sqrt{27}$ Depends on not having lost any of the previous marks.	A1 (7)

Way 2: Fact	or Formulae	
$\int y \frac{dx}{dt} dt = \int 3 s t$ Attempts $\int y \frac{dx}{dt} (dt)$ and c	in $2t \times 4\cos t (dt)$ obtains $k \int \sin 2t \cos t (dt)$	M1
$= 12 \int \frac{1}{2} (\sin 3t)$ Uses $\sin 2t \cos t = \frac{1}{2} (\sin 3t + \sin t)$	$Bt + \sin t$) (dt)) to obtain $\int A(\sin 3t + \sin t)(dt)$	M1
$= 6 \int (\sin 3t + \sin t) (dt)$	Correct integral	Al
$6\int (\sin 3t + \sin t) (dt)$	$= p \cos 3t + q \cos t (+c)$ r the integration.	M1
$=-2\cos 3t-6\cos t$	Correct integration	Al
$\left[-2\cos 3t - 6\cos t\right]_{0}^{\frac{\pi}{6}} - \left(-2\cos 0 - 6\cos 0\right)$	Correct use of limits for their integrated function. Must see use of both limits. Allow use of 30° for $\frac{\pi}{6}$. Dependent on the previous method	d M1
8-3\sqrt{3}	mark. Allow $8 - \sqrt{27}$. Depends on not having lost any of the previous marks.	A1
Way 3: Car	tesian Form	
$v = 3\sin 2t = 6\sin t\cos t$	Uses $\sin 2t = 2\sin t\cos t$	M1
$x = 4\sin t \Rightarrow \sin t = \frac{x}{4}$	$\Rightarrow y = 6\left(\frac{x}{4}\right)\sqrt{1 - \left(\frac{x}{4}\right)^2}$	M1
Uses $\cos t = \sqrt{1 - \sin^2 t}$	to obtain y in terms of x	
$=\frac{3}{2}\int x \left(1-\frac{x^{2}}{16}\right)^{\frac{1}{2}} (dx)$	Correct integral or equivalent e.g. $\int \left(\frac{9}{4}x^2 - \frac{9}{64}x^4\right)^{\frac{1}{2}} (dx)$	A1
$\frac{3}{2}\int x \left(1 - \frac{x^2}{16}\right)^{\frac{1}{2}} \left(dx\right) = k \left(1 - \frac{x^2}{16}\right)^{\frac{3}{2}}$	Correct form for the integration.	M1
$\frac{3}{2}\int x\left(1-\frac{x^2}{16}\right)^{\frac{1}{2}} (dx) = -8\left(1-\frac{x^2}{16}\right)^{\frac{3}{2}}$	Correct integration	A1
$\left[-8\left(1-\frac{x^2}{16}\right)^{\frac{3}{2}}\right]_0^2 = -8\left(1-\frac{2^2}{16}\right)^{\frac{3}{2}} + 8(1)$	Correct use of limits for their integrated function. Must see use of both limits. Dependent on the previous method marks.	d M1
8-3\sqrt{3}	Allow $8 - \sqrt{27}$. Depends on not having lost any of the previous marks.	A1

Question Number	Sch	Marks	
9	$\lambda = -2 \rightarrow (6, -1, -5)$	Correct coordinates, values or vector seen or used or implied. These values are sometimes seen embedded with the work as e.g. $2 - 2(-2)$, $1 - 2$, and $3 + 4(-2)$.	B1
	$3-2\mu = "-5" \Longrightarrow \mu = \dots$ $10+\mu a = "6" \Longrightarrow a = \dots$	Uses the <i>z</i> component of l_2 to find μ and then uses the <i>x</i> component to find <i>a</i>	M1
	a = -1	Correct value for <i>a</i>	A1
	$\Rightarrow -2a + b - 8 = 0 \Rightarrow b = (6)$		
	A full method of finding "b".		
	This involves using the fact that $\begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix}$	$\begin{pmatrix} a \\ b \\ -2 \end{pmatrix} = 0 \text{ and using their value of } a.$	M1
	$"c + \mu b" = "-1" \Rightarrow c + 24 = -1 \Rightarrow c = (-25)$ A full method of finding "c" using the j coordinate. Dependent on both previous method marks		
			dd M1
	b = 6, c = -25	Correct values	A1
		(6)	
			[6 marks]

Question Number	Scheme		Marks
10(a)		$y^{3} \rightarrow Ay^{2} \frac{\mathrm{d}y}{\mathrm{d}x}$	<u>M1</u>
	$3y^2 \frac{dy}{dr} + 4x^2 \frac{dy}{dr} + 8xy - 2 = 0$	$4x^2 y \to px^2 \frac{\mathrm{d}y}{\mathrm{d}x} + qxy$	<u>M1</u>
	<u> </u>	$3y^2 \frac{dy}{dx} + 4x^2 \frac{dy}{dx} + 8xy - 2 = 0$	A1
		The = 0 may be implied	
	$(3y^2 + 4x^2)\frac{\mathrm{d}y}{\mathrm{d}x} = 2 - 8xy \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \dots$	Collects terms in $\frac{dy}{dx}$ (must be two and from	
		the correct terms) and makes $\frac{dy}{dx}$ the subject	M1
		of the formula	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - 8xy}{3y^2 + 4x^2}$	Correct expression or correct equivalent	A1
			(5)

Ignore any spurious " $\frac{dy}{dx}$ = " for the first 3 marks

Allow full recovery in (b) if they have an incorrect denominator in (a)

(b)	2 0 0 1			
	$2-8xy=0 \Rightarrow y=\frac{1}{4x}$	dy = dy		
	or	Sets the numerator of their $\frac{d}{dx} = 0$ and	M1	
	$2 - 8xy = 0 \Longrightarrow x = \frac{1}{4y}$	proceeds to $y = f(x)$ or $x = f(y)$		
	Note that starting with $2-8xy = 4x^2 + 3y$	² generally will score no marks in (b)		
	Note that working with $4x^2 + 3y^2 = 0$ generally will score no marks in (b) and			
	can be ignored if seen alongside work	dealing with $2 - 8xy = 0$ unless it yields		
	extra spurious values - in which case the	he final mark can be withheld		
	$x = \frac{1}{4y} \Longrightarrow y^3 + 4\Big($	$\left(\frac{1}{4y}\right)^2 y - 2\left(\frac{1}{4y}\right) = 0$		
		or	dM1	
	$y = \frac{1}{4x} \Longrightarrow \left(\frac{1}{4x}\right)^2$	$+4x^2\left(\frac{1}{4x}\right)-2x=0$	u IVI I	
	Substitutes their <i>x</i> in terms of <i>y</i> or th Dependent on	eir y in terms of x into the equation for C the previous mark		
		Correct simplified equation (allow equivalent		
	$4y^4 = 1$ or $64x^4 = 1$	forms e.g. $y^4 = \frac{1}{4}, x^{-4} = 64$)	A1	
	$y = \frac{1}{\sqrt[4]{4}} \Longrightarrow x = \dots$	or $x = \frac{1}{\sqrt[4]{64}} \Rightarrow y = \dots$		
	Substitutes at least one of their values of x or y to find a value for the other variable			
	Starts again and repeats the above process for the other variable leading to non-zero real values Dependent on both previous method marks			
	$x = \pm \frac{\sqrt{2}}{4}, y = \pm \frac{\sqrt{2}}{2}$			
	The points do not have to be explicitly given as coordinates so just look for values but if any extra points/coordinates are given the final mark should be withheld			
	Two correct values for <i>x</i> or <i>y</i> or a co	rrect pair (likely to be $x = \frac{\sqrt{2}}{4}, y = \frac{\sqrt{2}}{2}$)		
	For <i>x</i> allow e.g. : $\pm \frac{1}{\sqrt[4]{64}}, \pm \frac{1}{2}$	$\frac{1}{\sqrt{2}}, \pm \frac{\sqrt{2}}{4}, \pm 64^{-\frac{1}{4}}$ awrt ± 0.354	Al	
	For <i>y</i> allow e.g. : $\pm \frac{1}{\sqrt[4]{4}}, \pm \sqrt{\frac{1}{2}},$	$\pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{2}}{2}, \pm 4^{-\frac{1}{4}}$ awrt ± 0.707		
	All 4 values correct	and exact and simplified		
	For <i>x</i> allow e.g. : $\pm \frac{1}{2\sqrt{2}}, \pm \frac{\sqrt{2}}{4}$	For y allow e.g. : $\pm \frac{1}{\sqrt{2}}, \pm \frac{\sqrt{2}}{2}, \pm \sqrt{\frac{1}{2}}$		
	Pairing is required but may be im	plied by e.g. $x = \pm \frac{1}{2\sqrt{2}}, y = \pm \frac{1}{\sqrt{2}}.$	A1	
	If after seeing correct values, the pair wi	ings are incorrect the final mark should be the the should be		
			(6)	
			[11]	

Note that it is possible to score M1dM1A1ddM0A1A0 if 2 values of one of x or y are found

Question Number	Sche	eme	Marks
11(a) Way 1	$\equiv \frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{2 \sin \theta \cos \theta}$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $f(\theta) + g(\theta)$ in the numerator with at least one of $f(\theta)$ or $g(\theta)$ correct for their denominator	M1
	$\equiv \frac{\cos(3\theta - \theta)}{\dots} \text{ or } \frac{\cos 2\theta}{\dots}$ $= \frac{0}{\sin 2\theta}$	For attempting to use a compound angle formula on the numerator or for attempting to $k\sin\theta\cos\theta = A\sin2\theta$ on the denominator	M1
	$=\frac{\cos(3\theta-\theta)}{2}$) or $\frac{\cos 2\theta}{2\theta}$	
	For attempting to use a compound angle f	Sin 2θ Formula on the numerator and attempting denominator to reach $A \cos 2\theta$	M1
	to use $k \sin\theta \cos\theta - A \sin 2\theta$ on the	$\frac{1}{B\sin 2\theta}$	
	$\equiv \cot 2\theta *$	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*
			(4)
(a) Way 2	$\equiv \frac{\cos 2\theta \cos \theta - \sin 2\theta \sin \theta}{2 \sin \theta}$ For attempting to use a compound angle one co	$\equiv \frac{\cos 2\theta \cos \theta - \sin 2\theta \sin \theta}{2 \sin \theta} + \frac{\sin 2\theta \cos \theta + \cos 2\theta \sin \theta}{2 \cos \theta}$ For attempting to use a compound angle formula on the numerators with at least one correct	
	$\equiv \cos 2\theta \left(\frac{\sin^2 \theta + \cos^2 \theta}{2\sin \theta \cos \theta} \right)$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$, factoring out $\cos 2\theta$ and simplifying the numerator.	M1
	$\equiv \cos 2\theta$ For attempt $k\sin\theta\cos\theta = A\sin2\theta$ on the denominator a to reach $\frac{2}{2}$	$\times \frac{1}{\sin 2\theta}$ ting to use nd $\sin^2 \theta + \cos^2 \theta = 1$ on the numerator $\frac{4\cos 2\theta}{B\sin 2\theta}$	M1
	Note that $\cos 2\theta \times \frac{1}{\sin 2\theta}$ can also be re $\cos 2\theta \left(\frac{\sin^2 \theta + \cos^2 \theta}{2\sin \theta \cos \theta} \right) = \frac{1}{2} \cos 2\theta (1)$	eached from $\cos 2\theta \left(\frac{\sin^2 \theta + \cos^2 \theta}{2\sin \theta \cos \theta} \right)$: $\tan \theta + \cot \theta = \frac{1}{2} \cos 2\theta \left(\frac{1 + \tan^2 \theta}{\tan \theta} \right)$	
	$=\frac{1}{2}\cos 2\theta \left(\frac{\sec^2\theta}{\tan\theta}\right) = 0$	$\frac{\cos 2\theta}{2\sin\theta\cos\theta} = \frac{\cos 2\theta}{\sin 2\theta}$	
	Award the third method mark for using correct trigonometry to reach $\frac{A\cos 2\theta}{B\sin 2\theta}$		
	$= \cot 2\theta *$	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*

(a) Way 3	$=\frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{2 \sin \theta \cos \theta}$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $f(\theta) + g(\theta)$ in the numerator with at least one of $f(\theta)$ or $g(\theta)$ correct for their denominator	M1
	$=\frac{1}{2}\cos 2\theta - \frac{1}{2}\cos 4\theta$	$-\frac{1}{2}\cos 2\theta - \frac{1}{2}\cos 4\theta + \frac{1}{2}\cos 4\theta + \frac{1}{2}\cos 2\theta$	
	$-2\sin^2$	$\theta \cos \theta$	M1
	Applies the factor	formulae to obtain	
	$R(\cos 2\theta + \cos 4\theta)$ for $\cos 3\theta \cos \theta$ a	$\frac{1}{120}$	
	$\equiv \frac{co}{sii}$	$\frac{s 2\theta}{r 2\theta}$	
	For attempting to use $k\sin\theta\cos\theta = A\sin^2\theta$	θ on the denominator and simplifies the	M1
	numerator to re	each $\frac{A\cos 2\theta}{B\sin 2\theta}$	
	$\equiv \cot 2\theta *$	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*
(a) Way 4	$=\frac{\cos 3\theta \cos \theta + \sin 3\theta \sin \theta}{2\sin \theta \cos \theta}$	For forming a single fraction with a common denominator of $k \sin \theta \cos \theta$ with $f(\theta) + g(\theta)$ in the numerator with at least one of $f(\theta)$ or $g(\theta)$ correct for their denominator	M1
	$\cos\theta (4\cos^3\theta - 3\cos\theta)$	$+\sin\theta(3\sin\theta-4\sin^3\theta)$	
	\equiv $2\sin^2$	$\theta \cos \theta$	
	Applies the formulae for $\cos 3\theta$ and si	$n3\theta$ to the numerator of their fraction.	MI
	If these formulae are quoted they m method must be seen to	ust be correct otherwise a complete establish both of them	
	$4(\cos^4\theta - \sin^4\theta) + 3(\sin^2\theta)$	$-\cos^2\theta$ $4\cos^2\theta - 3\cos^2\theta$	
	$\equiv \frac{1}{\sin 2\theta}$	$\frac{1}{1} = \frac{1}{1} = \frac{1}$	
	Collects terms and applies $\cos^2\theta - \sin^2\theta$	$\sin^2\theta = \cos 2\theta$ in the numerator and	M1
	$k\sin\theta\cos\theta = A\sin2\theta$ in the dem	nominator to reach $\frac{A\cos 2\theta}{B\sin 2\theta}$	
	$\equiv \cot 2\theta *$	Proceeds to correct answer with all intermediate work and no errors or omissions. An error includes missing and/or inconsistent variables.	A1*

(b)	$\cot 2x = 5\cos 2x \Longrightarrow \sin 2x = \frac{1}{5}$	Uses $\cot 2x = \frac{\cos 2x}{\cos 2x}$ and proceeds to		
	$(\cos 2x = 0)$	$\sin 2x = k (-1 \le k \le 1)$	MI	ļ
	$\Rightarrow x = \frac{1}{2}\arcsin\frac{1}{5}$	Correct order of operations to find one value of x from $\sin 2x = k$ Dependent on the previous mark	d M1	
	$\Rightarrow x = 0.101, 1.4$	70, $\frac{\pi}{4}$ (or 0.785)		
	A1: Any 2 values which round to those s	hown. Allow $\frac{\pi}{4}$ or awrt 0.785 and allow		ļ
	1.47 for 1.470 b	out not awrt 1.47		
	A1: All values which round to those show	vn. Allow $\frac{\pi}{4}$ or awrt 0.785 and allow 1.47	A1A1	
	for 1.470 but	not awrt 1.47		
	Ignore extra answers outside the rang	e but withhold the final mark for extra		
	answers in dograde loss both morely h	the range.		
	Answers in degrees lose both marks b	ut ignore degrees symbols ii present ii		
			(4)	
			[8 marks]	1

Note that it is possible to answer Q12 using integration by parts (either way round) BUT it is very demand	ing
and candidates are unlikely to get very far and will gain no marks.	
If they reach $Ax + B \ln x + C \ln (x-4)$, $A, B, C \neq 0$ send to review.	

they reach	$Ax + B \ln x$	$\ln x + C \ln ($	(x-4)	$, A, B, C \neq 0$	0 send to review	w.
------------	----------------	-------------------	-------	--------------------	------------------	----

Question Number	Sch	eme	Marks
12	$\frac{A}{r} + \frac{B}{r-4} = -\frac{2}{r} + \frac{14}{r-4}$	For an attempt to find partial fractions of the form $\frac{A}{x} + \frac{B}{x-4}$ where A and B are numeric and non-zero	M1
		Correct fractions $-\frac{2}{x} + \frac{14}{x-4}$	A1
	$\frac{3x^2 + 8}{x^2 - 4x} =$ Where $f(x) = \frac{A}{x} + \frac{B}{x - 4}$ with number of A Where $f(x) = \frac{Cx + D}{x^2 - 4x}$ with number of A	= $3 + f(x)$ eric <i>A</i> and <i>B</i> or the letters " <i>A</i> " and " <i>B</i> " or eric <i>C</i> and <i>D</i> with <i>C</i> , <i>D</i> not both zero	B1
	This mark is for integrating at least 2 term where k m Allow e.g. $\ln(x \pm k)$, $\ln(k \pm x)$, $\ln x $	s of the form $\frac{\alpha}{x \pm k}$ to obtain $\beta \ln (x \pm k)$ hay be zero $\pm k$, also allow $\ln x \pm k$ for this mark	M1
	For $\int 3 - \frac{2}{x} + \frac{14}{x-4} dx \rightarrow 3x - 2 \ln x $ coefficients requires modulus signs and/o implied by later work. E.g. all	+ $14 \ln x - 4 $ following through on their r brackets around the $x - 4$ unless they are ow $3x - 2 \ln x + 14 \ln (x - 4)$	Alft
	$=9-2\ln 3-$ Evidence of the use of both limits 3 and reaches an expression where <i>P</i> , <i>Q</i> and <i>R</i> are ratio Dependent on the pr	$3-14 \ln 3 =$ 1 and subtracts the right way round and of the form $P + Q \ln R$, onal and non-zero and $R > 0$ revious method mark	d M1
	= 6 - 4 Accept equ $6 - 8 \ln 9, 6 + 16 \ln \left(\frac{1}{3}\right), 6 - \ln 3^{16}, 6 + \ln \frac{1}{9 \times 3^{14}}, 6$	$\frac{16 \ln 3}{\text{ivalents e.g.}}$ $6 + \ln \frac{1}{43046721}, 6 - \ln 43046721$ $-\ln \left(9 \times 3^{14}\right) \text{ etc.}$	A1
			(7) [7 marks]
Some stud	Spect lents know to use PF but fail to see it is an in $3x^2 + 8$	ial Case: nproper fraction and the solution will look s 14 2	imilar to this:

$$\frac{3x^2 + 8}{x^2 - 4x} = \frac{14}{x - 4} - \frac{2}{x}$$
$$\int_{1}^{3} \frac{3x^2 + 8}{x^2 - 4x} dx = \int_{1}^{3} \frac{14}{x - 4} - \frac{2}{x} dx = \left[14 \ln|x - 4| - 2\ln|x|\right]_{(x=1)}^{(x=3)}$$
$$= 14 \ln 1 - 2\ln 3 - (14\ln 3 - 2\ln 1) = -16\ln 3$$

These students can potentially score M1 A1 B0 M1 A0 dM0 A0 for 3 out of 7

Question Number	Sch	eme	Marks
13(a)	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{2(1-t)-2t\times-1}{(1-t)^2} \text{or}$	$\frac{dy}{dt} = 2(1-t)^{-1} + 2t(1-t)^{-2}$	
	M1: If the quotient rule is not quoted and	u, v, u', v' are not stated they must obtain	
	$\frac{A(1-t)\pm B}{(1-t)^2}$		
	If the quotient rule is not quoted and <i>u</i> ,		
	positioned in th If the quotient rule is q C	M1 A1	
	M1: If the product rule is not quoted and	u, v, u', v' are not stated they must obtain	
	$A(1-t)^{-1} \pm Bt(1)$	$\left(1-t\right)^{-2} A,B>0$	
	If the product rule is not quoted and u ,	v, u', v' are stated they must be correctly	
	positioned in t If the product rule is q	he product rule uoted it must be correct	
	A1: Correct $\frac{d}{d}$	$\frac{y}{t}$ in any form.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\frac{2}{\left(1-t\right)^2}}{2t+3}$	Uses $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t}$	M1
	$=\frac{2}{(2t+3)(1-t)^2}$	Correct expression. Allow the $(1 - t)^2$ to expanded as long as it is collected and allow the whole of the denominator to be expanded as long as it is collected but apply isw where possible.	A1
			(4)
(D)	$\left(\frac{dy}{dx}\right)_{t=2} = \frac{2}{(2(2)+3)(1-2)^2} \left(=\frac{2}{7}\right)$	For substituting $t = 2$ in their $\frac{dy}{dx}$	M1
	$t = 2 \Longrightarrow x = 10, \ y = -4$	Correct coordinates for P	B1
	$y+4=\frac{2}{7}(x-10)$	Connect mothed for the equation of the	
	or $-4 = \frac{2}{7}(10) + c \Longrightarrow c = \dots$	tangent using their <i>P</i> .	M1
	· · · · · · · · · · · · · · · · · · ·	Or any integer multiple of this.	
	$\Rightarrow 2x - 7y - 48 = 0$	If the $\frac{2}{7}$ is obtained fortuitously then	Alcso
		this mark should be withheld.	· -
			(4)

If 2x - 7y - 48 = 0 is obtained fortuitously in (b) all the marks are available in (c) apart from the A1cso

(c) Way 1	$x = t^{2} + 3t, y = \frac{2t}{1-t} \Rightarrow 2x - 7y - 48$	$s = 0 \Longrightarrow 2\left(t^{2} + 3t\right) - 7\left(\frac{2t}{1-t}\right) - 48 = 0$	M1	
	Uses the given parametric coordinates an equati	d substitutes into their tangent to form an on in <i>t</i>		
	$2t^{3} + 4t^{2} - 40t + 48 = 0$ Correct equation			
	If they have a correct cubic equation and the root $t = -6$ is seen, this method can			
	If they do not have the correct equation, to score this mark they must have obtained a cubic equation that has a constant term and they need to attempt to factorise using $(t \pm 2)$ or $(t \pm 2)^2$ as a factor.			
	Look for $(t \pm 2)(at^{2} +)$ or $(t \pm 2)^{2}(at^{2} +)$	t +) or may use long division so look		
	for the corresponding expressions fo Depends on the fi	The quotient e.g. $at^2 + \dots$ or $at + \dots$ irst method mark.		
	t = -6	Correct value for <i>t</i> that has come from a correct cubic.	A1	
		Correct coordinates.		
	$Q = \left(18, -\frac{12}{7}\right)$ Allow $x = 18, y = -\frac{12}{7}$		Alcso	
		Ignore any reference to any other points e.g. $(10, -4)$		
		points c.g. (10, -4)	(5)	
(0)		\mathbf{x}^{2}		
(c) Way 2	$y = \frac{2t}{1-t} \Longrightarrow t = \frac{y}{y+2} \Longrightarrow 2\left(\left(\frac{y}{y+2}\right)\right)$	$\left(\frac{y}{y+2}\right)^2 + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$	M1	
(c) Way 2	$y = \frac{2t}{1-t} \Longrightarrow t = \frac{y}{y+2} \Longrightarrow 2\left(\left(\frac{y}{y}\right)\right)$ Finds t in terms of y and substitutes into the When eliminating t using y, the algebra m making t the s	$\frac{y}{x+2}^{2} + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. Subject for the subject from y.	M1	
(c) Way 2	$y = \frac{2t}{1-t} \Longrightarrow t = \frac{y}{y+2} \Longrightarrow 2\left(\left(\frac{y}{y+2}\right)\right)$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra minimized making <i>t</i> the second se	$\frac{y}{x+2}^{2} + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. The ust be correct so allow sign errors only for subject from y. Correct equation	M1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra making <i>t</i> the solution $\frac{7y^3 + 68y^2 + 208y + 192 = 0}{11}$ If they have a correct cubic equation and the solution $\frac{1}{2}$	$\frac{y}{x+2} + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. The use be correct so allow sign errors only for subject from y. Correct equation and the root y = -12/7 is seen, this method	M1 A1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)\right)$ Finds t in terms of y and substitutes into the When eliminating t using y, the algebra m making t the second	$\frac{y}{x+2}\Big)^2 + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. The use be correct so allow sign errors only for subject from y. Correct equation and the root y = -12/7 is seen, this method implied.	M1 A1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)$ Finds t in terms of y and substitutes into the When eliminating t using y, the algebra m making t the s $7y^3 + 68y^2 + 208y + 192 = 0$ If they have a correct cubic equation and can be solved. If they do not have the correct equation that has a subject of the solved a subject of the solved as t	$\frac{y}{x+2}\right)^2 + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. The use be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method simplied. The tangent term and they need to	M1 A1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2 + \frac{y}{y+2}\right)^2 = 2\left(\frac{y}{y+2}\right)^3 + \frac{1}{2}\left(\frac{y}{y+2}\right)^2 + \frac{y}{y+2}\right)^2 = 0$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra making <i>t</i> the solution $\frac{y}{y^3} + \frac{68y^2}{2} + \frac{208y + 192}{2} = 0$ If they have a correct cubic equation and can be the correct equation for the solution obtained a cubic equation that hat attempt to factorise using <i>t</i> and the solution of th	$\frac{y}{x+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. Use be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. Son, to score this mark they must have s a constant term and they need to $y + 4$ or $(y + 4)^2$ as a factor.	M1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)^2$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra mean making <i>t</i> the second mean $Ty^3 + 68y^2 + 208y + 192 = 0$ If they have a correct cubic equation and can be the correct equation obtained a cubic equation that hat attempt to factorise using (the correct equation) to $Ty^2 + 0$.	$\frac{y}{y+2}^{2} + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. Us us be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. Son, to score this mark they must have a constant term and they need to $y \pm 4$) or $(y \pm 4)^{2}$ as a factor. 4'' = 4''	M1 A1 dM1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)^2$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra mean making <i>t</i> the second mean $\frac{7y^3+68y^2+208y+192=0}{11}$ If they have a correct cubic equation and can be the correct equation obtained a cubic equation that hat attempt to factorise using (1) Look for $(y \pm "-4")(ay^2 +)$ or $(y \pm "-5)$ so look for the corresponding expression	$\frac{y}{y+2}^{2} + 3\left(\frac{y}{y+2}\right) - 7y - 48 = 0$ For tangent equation to form an equation in y. The use be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. So the score this mark they must have a constant term and they need to $y \pm 4$ or $(y \pm 4)^{2}$ as a factor. 4'' + (ay +) or may use long division the for the quotient e.g. $ay^{2} +$ or $ay + b^{2}$	M1 A1 dM1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2 + \frac{y}{y+2}\right)^2 = 2\left(\frac{y}{y+2}\right)^2$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra making <i>t</i> the second making <i>t</i> th	$\frac{y}{x+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. Use be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. Son, to score this mark they must have s a constant term and they need to $y \pm 4$) or $(y \pm 4)^2$ as a factor. $(4^{"})^2(ay +)$ or may use long division ins for the quotient e.g. $ay^2 +$ or $ay + 4$ irst method mark.	M1 A1 dM1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2 + \frac{y}{y+2}\right)^2 = 2\left(\frac{y}{y+2}\right)^2$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra mean making <i>t</i> the second mean secon	$\frac{y}{+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. The ust be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. The on, to score this mark they must have a constant term and they need to $y \pm 4$) or $(y \pm 4)^2$ as a factor. $4''\Big)^2 (ay +)$ or may use long division the for the quotient e.g. $ay^2 +$ or $ay + 4$ inst method mark. Correct value for y that has come	M1 A1 dM1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)^2$ Finds t in terms of y and substitutes into the When eliminating t using y, the algebra m making t the s $7y^3 + 68y^2 + 208y + 192 = 0$ If they have a correct cubic equation and can be the correct equation that has attempt to factorise using (the second product of the corresponding expression the the corresponding expression the final terms to factor the corresponding expression terms to factor the final terms to factor the corresponding expression terms to factor the final terms to factor terms the final terms to factor terms the final terms to factor terms the final terms terms to factor terms the final terms terms to factor terms the final terms terms to factor terms t	$\frac{y}{y+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. The use be correct so allow sign errors only for subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. The form the proof of the proof	M1 A1 dM1 A1	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2\right)^2$ Finds t in terms of y and substitutes into the When eliminating t using y, the algebra m making t the s $7y^3 + 68y^2 + 208y + 192 = 0$ If they have a correct cubic equation and can be If they do not have the correct equation that ha attempt to factorise using (Look for $(y \pm "-4")(ay^2 +)$ or $(y \pm "-so look for the corresponding expression\frac{1}{y} = -\frac{12}{7}$	$\frac{y}{y+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. Subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. Son, to score this mark they must have a constant term and they need to $(y \pm 4)$ or $(y \pm 4)^2$ as a factor. $(4'')^2 (ay +)$ or may use long division and for the quotient e.g. $ay^2 +$ or $ay + 4$ First method mark. Correct value for y that has come from a correct cubic. Correct value for x	M1 A1 dM1 A1 A1 A1cso	
(c) Way 2	$y = \frac{2t}{1-t} \Rightarrow t = \frac{y}{y+2} \Rightarrow 2\left(\left(\frac{y}{y+2}\right)^2 + \frac{y}{y+2}\right)^2 = 2\left(\frac{y}{y+2}\right)^2$ Finds <i>t</i> in terms of <i>y</i> and substitutes into the When eliminating <i>t</i> using <i>y</i> , the algebra making <i>t</i> the second making <i>t</i> th	$\frac{y}{y+2}\Big)^2 + 3\left(\frac{y}{y+2}\right)\Big) - 7y - 48 = 0$ For tangent equation to form an equation in y. The subject from y. Correct equation and the root $y = -12/7$ is seen, this method implied. The form the proof of th	M1 A1 dM1 A1 A1 A1cso	

Question Number	Sc	heme	Marks
14(a)	360	Cao. No need for $N = \dots$ just look for the correct value	B1
			(1)
(b)	900	Cao. No need for $N = \dots$ just look for the correct value. Allow e.g. $N < 900$	B1
			(1)
(c)	$780 = \frac{1800}{2 + 3e^{-0.2t}} \Longrightarrow 2340e^{-0.2t} = 240$	Substitutes $N = 780$ and proceeds to $Ae^{\pm 0.2t} = B$, where A and B are both positive or both negative	M1
	$2340e^{-0.2t} = 240$	Correct equation oe e.g. $e^{-0.2t} = \frac{4}{39}, 3e^{-0.2t} = \frac{4}{13}, e^{0.2t} = \frac{39}{4}$	A1
	$2340e^{-0.2t} = 240 \Longrightarrow e^{-0.2t} = -100000000000000000000000000000000000$	$\frac{4}{39} \Longrightarrow -0.2t = \ln\left(\frac{4}{39}\right) \Longrightarrow t = \dots$	
	$2340e^{-0.2t} = 240 \Longrightarrow \ln 2340e^{-0.2t} =$	$= \ln 240 \Longrightarrow \ln e^{-0.2t} = \ln 240 - \ln 2340$	dM1
	$e^{-0.2t} = \frac{4}{39} \Longrightarrow -0.2t = \ln\left(\frac{4}{39}\right) \Longrightarrow t = \dots$		ulvi i
	This mark is for fully correct processi	ng from $Ae^{\pm 0.2t} = B$ to obtain a value for t	
	Dependent on th	e first method mark	
	(t=) 11.4	For awrt 11.4	A1
			(4)

(d)(i)	$dN = (2+3e^{-0.2t}) \times 0 - 1800 \times -0.6 \times e^{-0.2t}$	
way 1	Quotient: $\frac{dt}{dt} = \frac{(2+3e^{-0.2t})^2}{(2+3e^{-0.2t})^2}$	
	(2+50)	
	Chain: $\frac{dt}{dt} = -1800 \times -0.6 \times e^{-0.2t} (2 + 3e^{-0.2t})^{-2}$	
	$Ae^{-0.2t}$	M1 A1
	M1: For obtaining a derivative of the form $\frac{1}{(2+3e^{-0.2t})^2}$	
	A1: Correct derivative in any form which may be unsimplified as above.	
	$1080e^{-0.2t}$	
	Often seen as $\frac{1}{\left(2+3e^{-0.2t}\right)^2}$	
	$dN = \frac{1800 \times 0.6 \times \frac{1}{3} \left(\frac{1800}{N} - 2\right)}{2}$	
	$\Rightarrow \frac{1}{dt} = \frac{1}{(1800)^2}$	
	$\left(\overline{N}\right)$	dM1
	A full attempt to get $\frac{dN}{dt}$ in terms of N.	
	Both $e^{-0.2t}$ and $(2 + 3e^{-0.2t})^2$ must be replaced by a function of N.	
	Dependent on the first method mark	
	$\Rightarrow \frac{dN}{dt} = \frac{N(900 - N)}{4500} \therefore A = 4500 \qquad \left \frac{dN}{dt} = \frac{N(900 - N)}{4500} \right $	A1
(d)(i) Way 2	$N = \frac{1800}{1000} \implies N(2 + 3e^{-0.2t}) = 1800 \implies (2 + 3e^{-0.2t}) \frac{dN}{1t} + N(-0.6e^{-0.2t}) = 0$	
way 2	$2 + 3e^{-0.2t}$ () dt ()	
way 2	2+3e ^{-0.2t} () dt () dt () M1: $(2+3e^{-0.2t})\frac{dN}{dt} + Ae^{-0.2t} = 0$	
way 2	$2+3e^{-0.2t} \qquad (1) \qquad (1) \qquad (1) \qquad dt \qquad (1)$ $M1: \left(2+3e^{-0.2t}\right)\frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$	
way 2	$2 + 3e^{-0.2t} \qquad () \qquad () \qquad dt \qquad () \qquad dt$ $M1: \left(2 + 3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ or $1800 \qquad 2M = 2M = -0.2t \qquad 1000 \qquad e^{-0.2t} \frac{dN}{dt} = e^{-0.2t} \frac{dN}{dt} = M = M = 0$	M1A1
Way 2	$2 + 3e^{-0.2t} (1)^{0} (1)^{0} dt (1)^{0} dt$ $M1: \left(2 + 3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ or $N = \frac{1800}{2 + 3e^{-0.2t}} \Longrightarrow 2N + 3Ne^{-0.2t} = 1800 \Longrightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N\left(-0.6e^{-0.2t}\right) = 0$	M1A1
Way 2	$2 + 3e^{-0.2t} (1)^{0} (1)^{0} dt (1)^{0} dt$ $M1: \left(2 + 3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ or $N = \frac{1800}{2 + 3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N\left(-0.6e^{-0.2t}\right) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t}\frac{dN}{dt} + CNe^{-0.2t} = 0$	M1A1
vvay 2	$2 + 3e^{-0.2t} (1)^{0} (1)^{0} dt (1)^{0} dt$ $M1: \left(2 + 3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ or $N = \frac{1800}{2 + 3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N\left(-0.6e^{-0.2t}\right) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t}\frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$	M1A1
Way 2	$2 + 3e^{-0.2t} (1)^{-1} (1)^{-1} (1)^{-1} dt = 0$ $M1: \left(2 + 3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ or $N = \frac{1800}{2 + 3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N\left(-0.6e^{-0.2t}\right) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t}\frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $dN = 0.6Ne^{-0.2t} = 0.6N\left(\frac{1800}{3N} - \frac{2}{3}\right)$	M1A1
Way 2	$2 + 3e^{-0.2t} \qquad (1 + 1)^{-1} \qquad (1$	M1A1
vvay 2	$2+3e^{-0.2t} \qquad (1)^{0} \qquad (1)^{0} \qquad (1)^{0} \qquad dt \qquad (1)^{0} \qquad dt$ $M1: \left(2+3e^{-0.2t}\right) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation} \qquad or$ $N = \frac{1800}{2+3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N\left(-0.6e^{-0.2t}\right) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t}\frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $\frac{dN}{dt} = \frac{0.6Ne^{-0.2t}}{2+3e^{-0.2t}} = \frac{0.6N\left(\frac{1800}{3N} - \frac{2}{3}\right)}{\frac{1800}{N}}$	M1A1
Way 2	$2+3e^{-0.2t} (1-y) = (1-y)^{-0.2t} (1-y)^{-0.2t} = 0$ $M1: (2+3e^{-0.2t}) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $N = \frac{1800}{2+3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t}\frac{dN}{dt} + N(-0.6e^{-0.2t}) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t}\frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $\frac{dN}{dt} = \frac{0.6Ne^{-0.2t}}{2+3e^{-0.2t}} = \frac{0.6N(\frac{1800}{3N} - \frac{2}{3})}{\frac{1800}{N}}$ $Makes \frac{dN}{dt} \text{ the subject and a full attempt to get } \frac{dN}{dt} \text{ in terms of } N.$	M1A1
vvay 2	$2+3e^{-0.2t} = (1-1)^{1} (1-1)^{1} dt = (1-1)^{1} dt$ $M1: (2+3e^{-0.2t}) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $N = \frac{1800}{2+3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t} \frac{dN}{dt} + N(-0.6e^{-0.2t}) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t} \frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $\frac{dN}{dt} = \frac{0.6Ne^{-0.2t}}{2+3e^{-0.2t}} = \frac{0.6N(\frac{1800}{3N} - \frac{2}{3})}{\frac{1800}{N}}$ $Makes \frac{dN}{dt} \text{ the subject and a full attempt to get } \frac{dN}{dt} \text{ in terms of } N.$ $Both e^{-0.2t} \text{ and } 2+3e^{-0.2t} \text{ must be replaced by a function of } N.$	M1A1 d M1
Way 2	$2+3e^{-0.2t} \qquad (1)^{2} \qquad (1)^{2} dt \qquad (1)^{2} dt \qquad (1)^{2} dt$ $M1: (2+3e^{-0.2t}) \frac{dN}{dt} + Ae^{-0.2t} = 0$ $A1: \text{ Correct equation} \qquad \text{or}$ $N = \frac{1800}{2+3e^{-0.2t}} \Rightarrow 2N + 3Ne^{-0.2t} = 1800 \Rightarrow 2\frac{dN}{dt} + 3e^{-0.2t} \frac{dN}{dt} + N(-0.6e^{-0.2t}) = 0$ $M1: A\frac{dN}{dt} + Be^{-0.2t} \frac{dN}{dt} + CNe^{-0.2t} = 0$ $A1: \text{ Correct equation}$ $\frac{dN}{dt} = \frac{0.6Ne^{-0.2t}}{2+3e^{-0.2t}} = \frac{0.6N(\frac{1800}{3N} - \frac{2}{3})}{\frac{1800}{N}}$ $Makes \frac{dN}{dt} \text{ the subject and a full attempt to get } \frac{dN}{dt} \text{ in terms of } N.$ $Both e^{-0.2t} \text{ and } 2 + 3e^{-0.2t} \text{ must be replaced by a function of } N.$ $\frac{Dependent \text{ on the first method mark}}{dN - N(900 - N)}$	M1A1 d M1

(d)(i) Way 3	$N = \frac{1800}{2 + 3e^{-0.2t}} \Longrightarrow 2N + 3Ne^{-0.2t}$	$e^{2t} = 1800 \Longrightarrow e^{-0.2t} = \frac{1800 - 2N}{3N}$	
	$\Rightarrow -0.2t = \ln\left(\frac{1800 - 2N}{3N}\right) \Rightarrow \frac{d}{dt}$	$\frac{0-2N}{3N} \Longrightarrow \frac{dt}{dN} = -5 \times \left(\frac{3N}{1800-2N}\right) \times -600N^{-2} $ M1 A1	
	M1: For an attempt to m	ake t or $-0.2t$ the subject	
	and then applies the cl	nain rule to obtain $\frac{dt}{dN}$	
	A1: Correct deriv	vative in any form	
	dN (18	$(00-2N)N^2$	
	$\Rightarrow \frac{dt}{dt} = \frac{9000}{9000}$		
	A full attempt to ge	t $\frac{\mathrm{d}N}{\mathrm{d}t}$ in terms of N.	d M1
	Dependent on the	first method mark	
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(900 - N)}{4500} \therefore A = 4500$	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(900 - N)}{4500}$	A1
(ii)	N = 450	Cao	B1
. /		1	(5)
			[11marks]

Question Number	Sch	eme	Marks	
15(a)	$\frac{8000}{56+9+0} = \frac{8000}{65} = \frac{1600}{13}$	Allow any equivalent fraction or awrt 123m	B1	
	0		(1)	
(D)	$\frac{9\cos t + 40\sin t}{1000}$	$t = R\cos(t - \alpha)$		
	$R = \sqrt{9^2 + 40^2} = 41$	41 only	B1	
	$\alpha = \arctan\left(\pm\frac{40}{9}\right) = \dots$	or $\alpha = \arctan\left(\pm\frac{9}{40}\right) = \dots$		
		or	M1	
	$\alpha = \arcsin\left(\pm\frac{40}{"41"}\right) = \dots$	or $\alpha = \arccos\left(\pm\frac{9}{"41"}\right) = \dots$		
	$\alpha = 77.3$	Awrt 77.3	A1	
		-	(3)	
(c)(i)	$\frac{8000}{56+'R'} = \dots m$	Attempts $\frac{8000}{56 + 'R'}$	M1	
	$=\frac{8000}{97}$	$\frac{8000}{97}$ or awrt 82.5	A1	
(ii)	<i>t</i> = 77.3	Awrt 77.3 or follow through their α (ignore what they do in (c)(i))	B1ft	
			(3)	
(d)	$150 = \frac{8000}{56 + 41\cos(t - 77.3)}$	$150 = \frac{8000}{56 + 41\cos(t - 77.3)} \Longrightarrow \cos(t - 77.3) = -0.065$		
	Uses their part (b) with $H = 150$ and real	ches $\cos(t \pm 77.3) = k \text{ with } -1 < k < 0$		
	$\cos(t \pm "77.3") = -\frac{8}{123}$ or awrt-	0.065 (Follow through their 77.3)	A1ft	
	$\cos(t\pm77.3) = -\frac{8}{123} \Longrightarrow t\pm7$	$77.3 = \arccos\left(-\frac{8}{123}\right) \Longrightarrow t = \dots$	dM1	
	Takes arccos and then \pm "77.3" and uses Dependent on the first 1	Takes arccos and then ±"77.3" and uses the <u>obtuse</u> angle leading to a value for t Dependent on the first M so requires $-1 \le k \le 0$		
	(t=)171	Awrt 171 and no other values	A1	
		1	(4)	
			[11 marks]	

Note that the use of radians for an otherwise correct solution would normally lose the A mark in (b) and the final A mark in (d). (Values are (a) 1.349 and (d) 2.98)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom